ImageVerifierCode 换一换
格式:PPTX , 页数:17 ,大小:500.81KB ,
文档编号:5897843      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897843.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 4-3.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 4-3.pptx

1、Integration by Parts 分部积分法 1Integration by Parts 2When u and v are continuously differentiable functions of x,the Product Rule for differentiation tell us that(),or().uvuvvud uvudvvduIntegrating both sides with respect to x,we have()uv dxuv dxvu dx.uvvu dx uv dxuvvu dx().uvuvvuTransposing terms,()uv

2、 dxvCu ;v dxdv u dxduIntegration by Parts 3Note:This formula express one integral,udv,in terms of a second integral,vdu.With a proper choice of u and v,the second integral may be easier to evaluate than the first.When this equation is written in the simpler differential notation,we obtain the follow

3、ing formula.Formula for Integration by Parts udvuvvduIntegration by Parts 4 Evaluate.xxe dx Solutionxxxe dxxde xxxee dx xxxeeC(1).xexCudvuvvdu,xxde dxuxvedCan we choose as the for the?xxxeudxe 22211()222xxxxxe dxde xx e dxxeQuestion,xdudx veThe problem becomes worse.Integration by Parts 5cos.xxdx So

4、lution(I)Letcos,ux 212xdxdxdvcosxxdx 22cossin22xxxxdx Solution(II)Let,ux cossinxdxdxdvcosxxdx sinxdx sinsinxxxdx sincos.xxxCthe problem may becomes worse.Indeed,uIt is obviously,if we do not make a proper choice of dv and,udvuvvdu21sin,2duxdx vx ,sindudx vx Evaluate Integration by PartsThe method of

5、 the integration by parts is suitable to apply to the following integrals:6;sin;cos;ln;ln;arcsin;arccos;arctan;sin;cos;kaxkkaamkkkaxaxx e dxxbxdxxbxdxxxdxxxdxxaxdxxaxdxxbxdxebxdxebxdx udvuvvduIntegration by Parts7Compute the following integrals:221);2)(2)cos;3)ln;4)arcsin;5)sin.xxx e dxxxxdxxxdxxdxe

6、xdx udvuvvduIntegration by Parts821)xx e dx Solution22xxx e dxx de 22()xxx ee d x 22xxx exe dx 2,xuxdvde22xxxx exee dx,xux dvde222.xxxx exeeCpower exponential,the integrand is the product of afunction()and anfunction.For this case,we always regard as the function.kaxkaxkkx e dxuxxeN udvuvvduIntegrat

7、ion by Parts922)(2)cosxxxdx Solution Let22,uxxcossin.xdxdxdv22(2)cos(2)sinxxxdxxx dx22(2)sinsin(2)xxxxd xx 2(2)sin2(1)sinxxxxxdx(1)sin(1)(cos)xxdxxdx(1)coscos(1)xxxd x co(s1),()vuxdxd Then,2(2)22,dud xxxsin.vx udvuvvduIntegration by Parts1022(2)cos(2)sin2(1)cos2 cos(1)xxxdxxxxxxxd xSolution(continue

8、d)2(22)sin2(1)cos.xxxxxC2(2)sin2(1)cos2 cosxxxxxxdx 22,cosuxx dvdxsin or cospower sinecosine,the integrand is the product of a function()and aorfunctionsin(orcos).For this case,we always regardas the function .kkkkxbxdxxbxdxkNxuxbxbx udvuvvdu22)(2)cosxxxdx Integration by Parts113)lnxxdx Solution21ln

9、ln2xxdxxdx 221lnln2xxx dx 221ln2xxxdxx 2211ln.22xxxCln,;ux dvxdxlnpower loga ,the integrand is the product of afunction()and aof.For this case,we always regarrithmln,not das the function.,xxdxxxxxRu 21ln2xxxdx 211,2dudx vxxudvuvvduIntegration by Parts 12By substitutionSolution Letarcsin,ux.dxdv arcs

10、in xdx arcsin(arcsin)xxxdx 21arcsin1xxxdxx 4)arcsin xdx 2211arcsin(1)21xxdxx 12221arcsin(1)(1)2xxxdx 2arcsin1.xxxCThen,21(arcsin),1dudxx.vx udvuvvduIntegration by Parts13arccos,arctan,arccot,arcsin,arccos,arctan,arccot,xdxxdxxdxxxdxxxdxxxdxxxdxSimilarly,one can solve the following problems by partsr

11、csin.power inverse trigonemetric function (),the integrand is the product of a function()and anof.For this case,we choose()notas the functi arcsin.,on.kkkx aaxdxetckNxax etcxxu 0arcsin,ux ddvxxxd udvuvvdu4)arcsin xdx Integration by Parts 14Solution(I)5)sinxexdx sinxexdx sinxxde sin(sin)xxexe dx sinc

12、osxxexexdx sincosxxexxde sincos(cos)xxxexexe dx(sincos)sinxxexxexdx sinxexdx(sincos).2xexxCLetsin,ux.xxe dxdedvcos,xux dve dx2sin(sincos).xxexdxexxC Note Sometimes,after we use the parts formula,the primal integral will occur again.Then,(sin)cos,dudxx.xve udvuvvduIntegration by Parts 155)sinxexdx So

13、lution(II)Let,xue sin(cos).xdxdxdvsinxexdx(cos)xe dx coscos()xxexxd e coscosxxexexdx cos(sin)xxexe dx )in,(sxudvdexcossinsinxxxexexexdx sinxexdx(sincos).2xexxCor,the integrand is the product of an function and afunction.For this cassin cosexponentiae,we can choose a l trigonemetriny of the two funct

14、ions as the.c axaxebxdxebxdxuPlease evaluatecos.xexdx udvuvvduIntegration by Parts16(ln)(ln)(ln)nnnnIxxxxddxx Evaluate(ln)().nnIxdx nN Solution11(ln)(ln)nnxxx nxdxx 1(ln)(ln)nnxxnxdx 1(ln)nnxxnI 11lnlnln,IxdxxxxdxxxxCxParticularly,2221(ln)2(ln)2(ln);IxxIxxxxxC33232(ln)3(ln)3(ln)6(ln);IxxIxxxxxxxCas

15、so on.Finish.Exercise Evaluate,22(0).()nndxInN axa 1(ln)nnnIxxnI udvuvvduIntegration by Parts 17Suppose that one of the anti-derivatives for()f xis2,xe evaluate().xfx dx Solution()xfx dx ()xdf x ()(),xf xf x dx 2and(),xf x dxeC ()()f x dxf x QBy the method of integration by parts,we haveTake differentiation to both sides of the last equation,we obtain that2()2,xf xxe ()xfx dx ()()xf xf x dx 222xx e 2.xeC

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|