ImageVerifierCode 换一换
格式:PPTX , 页数:9 ,大小:268.16KB ,
文档编号:5897844      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897844.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 6.3.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 6.3.pptx

1、Section 7.312Differential Equations of Second Order Solvable by Reduced Order MethodsIn this part,we will introduce some methods for solving some kind of second order equations of the form(,)yf x y yThere are three types of equation of this form which can be solved by reduction of order methods.We w

2、ill discuss them in the following.(1)()yf xSolving this type of equations is very simple.We need only integrate f(x)successively twice.Example 1 Find the general solution of the equation cos.yxSolutionand then12(sin)yxC dxC 12cos.xC xC 1sinyxC SinceFinish.3Differential Equations of Second Order Solv

3、able by Reduced Order Methods(2)(,)yf x yThe character of the equation is that the function f does not contain the unknown function y.dpydxWe make the transformation yp,so thatThus the equation is transformed into(,).dpf x pdx This is a differential equation of first order.If we can find its general

4、 solution denoted by1(,),pg x C then since,dypdx we have1(,).dyg x Cdx Integration again,we obtain the desired general solution12(,).yg x C dxC 4Differential Equations of Second Order Solvable by Reduced Order MethodsExample 2 Find the particular solution of the equation2(1)2xyxywith the initial con

5、ditions 01xy 03.xy andSolutionLet;ypthen.dpydxSubstituting into the equationwe have2(1)2dpxxpdxSeparating variables we obtain22.1dpxdxpx Then,the general solution is21lnln(1)lnpxC21(1).pCx5Differential Equations of Second Order Solvable by Reduced Order MethodsSolution(continued)orIntegration again

6、we obtain the general solution of the given equation,Substituting the initial conditions 03,xy 01xy into the equation(1)21(1)dyCxdx(1)21213yCxxC(2)and(2),respectively,we obtain that13C and21.C Finish.Example 2 Find the particular solution of the equation2(1)2xyxywith the initial conditions 01xy 03.x

7、y and6Differential Equations of Second Order Solvable by Reduced Order Methods(3)(,)yf y yThe character of the equation is that the function f does not contain the independent variable x.dpydxWe make the transformation yp ,so thatThus the equation is transformed into(,).dpf y pdx(3-1)If we regard p

8、as an unknown function and y as the independent variable in equation(3-1);then by the rule for differentiation of composite functions we have.dpdp dydpypdxdy dxdy7Differential Equations of Second Order Solvable by Reduced Order Methods(,)dpf y pdx(3-1)Hence the equation(3-1)may be changed into(,).dp

9、pf y pdy(3-2)If the general solution of(3-2),denoted by p=g(y,C1),can be found then since p=y we have1(,).dyg y Cdx Therefore,the general solution of the given equation is given by21.(,)dyxCg y C 8Differential Equations of Second Order Solvable by Reduced Order MethodsSolution Substituting into the

10、given equation we obtain20,dpyppdythat is,0dpp ypdyor0,0.pdpypdy From p=0,we have0,dydx so y=C.Example 3 Find the general solution of the equation 2()0.yyy.dpydxLetyp ,so that9Differential Equations of Second Order Solvable by Reduced Order MethodsSolution(continued)From the equation0dpypdywe can obtain1pC y or1,dyC ydx so that12.C xyC e It is easy to see that the solution y=C may be obtained from the general solution by choosing C1=0.Therefore,the general solution of the given equation is the one shown in the last equation.Finish.Example 3 Find the general solution of the equation 2()0.yyy

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|