ImageVerifierCode 换一换
格式:PPTX , 页数:22 ,大小:529.38KB ,
文档编号:5897851      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897851.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 1-4.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 1-4.pptx

1、Infinitesimal and Infinite QuantitiesInfinitesimal Quantities 无穷小量无穷小量2-1-0.50.51-0.75-0.5-0.250.250.50.7512xsin x1cos x 1020304050-0.2-0.10.11xsin xxan infinitesimal quantity 无穷小量无穷小量 with respect to 0 xx(or x),(or()0 x as 0 xxx)then If a function()x is calledor is called simply infinitesimal 无穷小无穷

2、小.Infinitesimal Quantities3 RemarkDo not confuse an infinitesimal quantity with any small non-zero value.Whether a function is an infinitesimal quantity depends also on how the independent variable changes.0lim()xxf xA Infinitesimal Quantities4isan infinitesimal and()x f(x)A x The necessary and suff

3、icient condition for lim()f xA is()()f xAx,where()x is infinitesimal.Relation of Infinitesimals with limits 0lim()0 xxf xA()()xf xA 0()is an infinitesimal as xxx()()f xAx 0lim()xxf xA Infinitesimal Quantities5Suppose that the independent variables change in the same way.Then (1)The algebraic sum of

4、a finite number of infinitesimals is still an infinitesimal;(2)The product of a finite number of infinitesimals is also an infinitesimal.If a(x)and b(x)are two infinitesimals as x tends to x0,then c(x)=a(x)+b(x)is infinitesimal as x tends to x0;d(x)=a(x)b(x)is infinitesimal as x tends to x0.For exam

5、pleInfinitesimal Quantities6 Suppose that()x is an infinitesimal as 0 xxThen()()x f x is also an infinitesimal as 0.xx and f(x)is a locally bounded function in the deleted neighborhood of0.xf(x)is locally bounded function00such that(),().oMf xMxU x 0()()()as()ox f xMxxU x0()()()()as()oMxx f xMxxU x0

6、lim()()0 xxx f xis an infinitesimal()xsinlim.xxxExample Find Infinitesimal Quantities7The sum or product of two infinitesimal is still an infinitesimal,then how about the quotient of two infinitesimals?Is it also an infinitesimal?For example,as 0,xx,sin x and x2 are both infinitesimals.22sin0,1.xxxx

7、xx We haveThe order of Infinitesimals 8()x()x()0.x (The Order of the Infinitesimals)Assume that and are two infinitesimals as x is varying in a certain way,and()lim0,()xx ()x()x()().xox (1)If then is said to be an infinitesimal of(or is infinitesimal of lower order),denoted byhigher order than()x th

8、an()x()(1)xo ()x In particular,the notation means is an infinitesimal.The order of Infinitesimals 9()x()x()0.x (The Order of the Infinitesimals)Assume that and are two infinitesimals as x is varying in a certain way,and()lim0()xCx ()x()x()().xOx (2)If,then and be two infinitesimals with the same ord

9、er 同阶无穷小同阶无穷小,are said to denoted by The order of Infinitesimals 10()x()x()0.x (The Order of the Infinitesimals)Assume that and are two infinitesimals as x is varying in a certain way,and()lim1()xx ()x()x()().xx (3)If,then and be two equivalent infinitesimals 等价无穷小等价无穷小,are said to denoted by The or

10、der of Infinitesimals 11()x()x()0.x (The Order of the Infinitesimals)Assume that and are two infinitesimals as x is varying in a certain way,and()lim0,()kxCx ()x().x(4)If then is said to be a k-order infinitesimal with respect to In particular,taking 0()xxx,if 00()lim0()kxxxCxx ,then()x is called a

11、k-order infinitesimal as 0 xx.The order of Infinitesimals 120.x Compare the orders for the following infinitesimals as SolutionSince Similarly,it is easy to check that when 0 x,we have2tan,arcsin,arctan,1 cos2xxxxxxxx.43,()2xxx 2()2.xx (1)Since we have4322(2).xxox (2)()sin,xx ().xx Solution0sinlim1,

12、xxx we havesin.xx43200()2limlim()2xxxxxxx 200,2lim2xxx The order of Infinitesimals 13 Prove that when 10,11,.nxxx nNn:Proof:By the formula 10,11nxxxn:0111limnxxxn 11222()(),nnnnnnnabab aabababbL LRationalizing the numerator we obtain 011limnxxx120lim(1)(1)1nnxnnxxxx L L1.n Hence 111.nxxn:Finish.Equi

13、valence transformations of infinitesimals14()()()(),()()()()xxxxxxxx,)()(lim)()(lim)()(lim)()(limthen xxxxxxxxIf()(),()()xxxx and the limit of()()xx exists.()()limlim()()xxxx Theorem Suppose that()x,()x,()x,()x are all infinitesimalsfor a given behaviors of x.()()xx also exists and Then the limit of

14、 ProofSince the conclusion follows from our assumptions.Equivalence transformations of infinitesimals15Solution Find 0.tan3limsin5xxxFinish.tan33xx 00.tan33limlimsin55xxxxxx 3.5 Since we have known that andsin55,xx we haveEquivalence transformations of infinitesimals16SolutionWe have known that By t

15、he last theorem,we haveFinish.Find 32011lim.arctan2xxxx0 x Both the numerator and denominator tend to 0 as.3221arctan2 2,113xxxx.32011limarctan2xxxx2013lim2xxxx 1.6 Equivalence transformations of infinitesimals173300tansinlimlim0 xxxxxxxx.Solution Note:Misuse of the theorem:Find 30.tansinlimxxxx Fin

16、ish.30tansinlimxxxx 2302limxxxx 30tan(1 cos)limxxxx 1.2 Infinite quantities18Definition(Infinite Quantities 无 穷 大 量无 穷 大 量)Let 0:()Rf U x.If 0M,()0M,such that|()|f xM for all x satisfying 00|xx,then()f x is called an infinite quantity as 0 xx,or is called an infinity as 0 xx,denoted by 0lim()xxf x o

17、r()f x as 0 xx.If instead of|()|f xM,we use()f xM (or()f xM )in the above definition,then()f x is called a positive(negative)infinity as 0 xx.Infinite quantities19O()yf x 0 xxyGeometric meaning of an infinite quantityInfinite quantities2031lim,3xx lim(1),xxaa1lim ln(1)xx()sin,f xxx x()f x.x is not a

18、n infinity as oxyunboundedInfinite quantities21(1)If()f x is an infinitesimal but not zero in the required interval,then 1()f x is an infinity;(2)If()f x is an infinity,then 1()f x is an infinitesimal;Theorem Suppose that the independent variables in the following functions vary in the same way.We h

19、ave Note The algebraic sum of two infinities is not necessarily an infinity and the product of an infinity and a bounded function is also not necessarily an infinity.(4)The sum of an infinity and bounded function is also an infinity.(3)The product of a finite number of infinities is also an infinity;Review22The definition of infinitesimal and their orderEquivalence transformations of infinitesimalsInfinite quantities

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|