ImageVerifierCode 换一换
格式:PPTX , 页数:25 ,大小:615.06KB ,
文档编号:5897866      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897866.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 3-3.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 3-3.pptx

1、Taylors Theorem And Its Applications2Overview0()U x variable x in 0 x,where is a fixed point,can be calculated simplyThis approximation is simple and is easily used,but it has low precision,since and the approximation is,and also thisIn Chapter 2,we had seen that the value of a smooth function for s

2、omeby approximation 000()()()()f xf xfxxx.()f xthe difference between the accurate value of 0 xx just a infinitesimal of higher order with respect to is very small.0|xx approximation can only be used in the case of In this lecture,we will form a new technique to approximate the value of a function w

3、ith higher order of computation error.3Taylors Theorem000()()()f xfxxx 2010200()()()()nnnP xaa xxaxxaxxL()nP xis using a line,()f x,to approximate a curve.It can be(1)n n find a suitable polynomials of degreefto approximate a given curve of function,such that the approximate error is.That isIf we ca

4、n do so,what are the coefficients of,and how can we obtain000()()()()f xf xfxxx It is easy to see that the approximation,in fact,()f ximaged that if we use a suitable curve to approximate curve,the applicablewill be wider and the precision will be improved.It seems nature that we chosethe polynomial

5、s as the suitable curve.0()nxx an infinitesimal of higher order with respect to 0()()()nnf xP xo xx.them?Then the question becomes to,we try to4Taylors TheoremTaylor PolynomialPeano remainderTaylor coefficientsTaylor,Brook(1685-1731)English mathematician 200000()000()0000()()()()()()1!2!()()()!()()(

6、)!nnnknknkfxfxf xf xxxxxfxxxo xxnfxxxo xxk L L(Taylors theorem with Peano remainder)Suppose that the function f is differentiable of order n at the point x0.Then5Taylors TheoremTheorem(Taylors theorem with Lagrange remainder)Suppose that the function f is differentiable of order 1n in a interval I,0

7、 xI.Then for any xI,there exists at least one point ,which lies between x and 0 x,such that Taylor,Brook(1685-1731)English mathematician Lagrange remainderLagrange Formula200000()(1)1000()(1)10000()()()()()()1!2!()()()()!(1)!()()()()!(1)!nnnnknnknkfxfxf xf xxxxxfxfxxxxnnfxfxxxxkn L6Taylors Theorem0M

8、 Compare to the Peano remainder,the Lagrange remainder can be used to estimate the error more precisely.such that(1)|()|nfxM ,xa b ,In fact,if the function f is differentiable of order n+1 on a,b,and there is a constant then0nR()nP xWe can see from the inequality that n as.This means that to approxi

9、mate a differentiable function,the error may be make arbitrarilyif we utilize the polynomial ,a bof any order in the whole interval small(1)110|()|()|()(1)!(1)!nnnnfMRxxxbann .n is taken large enough.while7Taylors TheoremColin Maclaurin(1698-1746)Scottish mathematician If we let 00 x ,then the Lagra

10、nge formula becomes()(1)21()(1)10(0)(0)(0)()()(0)1!2!(1)!(0)(),01.!(1)!nnnnknnknkffffxf xfxxxxnnffxxxkn Land this formula is called the Maclaurin formula.8Maclaurin Formulae for Some Elementary Functions2112!(1)!nxxnxxeexxnn L(,)x ()xf xe Maclaurin formula for the exponential function()()kxfxe Since

11、 we havewhere 01 and.()(0)1kf and,9Maclaurin Formulae for Some Elementary Functions()()sin,0,1,2,2kfxxkkn L()10,2(0),1,2,(1),21kmkmfmkm L35721121cossin(1)(1)3!5!7!(21)!(21)!mmmmxxxxxxxxmm L(,)x ()sinf xx()cosf xx Maclaurin formula for and()sinf xx Let,since or()(0)1kf,thenwhere and 01.we have 10Macl

12、aurin Formulae for Some Elementary FunctionsSimilarly,we have242122coscos1(1)(1)2!4!(2)!(22)!mmmmxxxxxxmm L()sinf xx()cosf xx Maclaurin formula for and(,)x where and 01.11Maclaurin Formulae for Some Elementary Functions()1(1)!()(1),1,2,(1)kkkkfxknx L()1(0)(1)(1)!kkfk 234111ln(1)(1)(1)234(1)(1)nnnnnx

13、xxxxxxnnx L()ln(1)f xx Maclaurin formula for We had known thatsoThus(1,)x (0,1)Where and.12Maclaurin Formulae for Some Elementary Functions()()(1)(1)(1),0,1,2,kkfxkxkn LL()(0)(1)(1)kfk L211(1)(1)(1)(1)12!(1)()(1)!(1)nnnnxxxxnnxnx LLL()(1)()f xxR Maclaurin formula for We had known thatsoThus(0,1)(1,)

14、x Where and.13Some Applications of Taylors Theoremxy xysin(1)Approximate calculations14Some Applications of Taylors Theoremxy xysin!33xxy o(1)Approximate calculations15Some Applications of Taylors Theoremxy xysin!33xxy o!5!353xxxy (1)Approximate calculations16Some Applications of Taylors Theoremxy x

15、ysin!33xxy !5!353xxxy !7!5!3753xxxxy o(1)Approximate calculations17Some Applications of Taylors Theoremxysin!11!9!7!5!3119753xxxxxxy o(1)Approximate calculations18Some Applications of Taylors Theorem1111(1),(0,1)2!neRn L3(1)(1)!(1)!neRnn(1)Approximate calculations,we have3ee since,soIt may be seen t

16、hat(1)0nRn ,as e,which means that is approximated and estimation of the error.eApproximate calculation of the value of Solutionxe1x in the maclaurin formulae for Let by the approximation formula:11122!3!enLThe error can be made arbitrarily small as long if Finish.n is taken large enough.19Some Appli

17、cations of Taylors TheoremExample The Taylor approximation of degree 2 for the function()cosf xx is 2212xP.For what value of x is the error in this approximation not greater that 0.1?(1)Approximate calculations(4)422()()()()4!fRxf xP xx|cos|1 4|0.124x Since the error of approximation of Taylor is wh

18、en lies between the points x0 and(4)()cosf.Since and for all,we know that the error in the approximation is no more than 4|24x.,we only need 1.241.24x.In order to have Solution:20Some Applications of Taylors Theorem(1)Approximate calculations()xf 2n 5320 xx Example Find an approximate value of a rea

19、l root for the equation on the parameter;we denote this root by.This function can be seen is differentiable to any order.Thus,by Taylor,we obtain where is a very small parameter.It is easy to prove that this equation has a real root and it is dependentby the given function.as an implicit function de

20、terminedIt can be prove that()xf the implicit function formula and taking for instance,2(0)(0)(0)2!fxfff .Solution212(0)(0)20)!(fxfff Some Applications of Taylors Theorem(1)Approximate calculations5320 xx Find an approximate value of a real root for the equation where is a very small parameter.0 2x

21、450dxdxxxdd Solution(continued),we have,that is We take different to each side of the given,we haveWe will determine the coefficients in the last equation.Take equation with respect to 0(0)dxfd Differentiating both sides of the given equation again,we haveso that(0)2f.2(0)(00)2!)fffxf 405xx 1.40 22S

22、ome Applications of Taylors TheoremSo that 22432(5)2020d xdxdxxxddd(1)Approximate calculations5320 xx Find an approximate value of a real root for the equation where is a very small parameter.Solution (continued)220(0)d xfd therefore,the second degree approximate of the real root is 2(0)(0)(0)2!xfff

23、f 22403200 x.23402025dxdxxddx 11600 Finish.23Some Applications of Taylors Theoremsin x30sinlimxxxx(2)Finding limitsSolution,we haveFinish.30sinlim.xxxx Find By Maclaurin formula with Peano remainder to 3430()3!limxxxo xxx 4301()lim3!xo xx16 24Some Applications of Taylors TheoremExample Suppose that(

24、)0fx and()f x is an equivalent infinitesimal with x as 0 x.Prove that()f xx,if 0 x .(3)Proving inequalities(0)0f ProofBy the Maclaurin formula we have2()()(0)(0)2!ff xffxx ,x0lies between and .On the other hand,by the assumption we know2()(0)(0)()2!fffxxxo x .Thus,()()f xxo x.Then,we have(0)1f and .

25、25Some Applications of Taylors TheoremExample Suppose that()0fx and()f x is an equivalent infinitesimal with x as 0 x.Prove that()f xx,if 0 x .(3)Proving inequalities 2()()2!ff xxx Proof(continued)()0fx Since,we have()0fx ()f xx 0 x Similarly,we can prove that if then,while.So that()f xx 0 x as.Finish.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|