ImageVerifierCode 换一换
格式:PPTX , 页数:27 ,大小:822.85KB ,
文档编号:5900206      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5900206.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 8.2.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 8.2.pptx

1、Section 8.212The Dot Product(点积点积,数量积数量积,内积内积)of Two VectorsThe dot product can be used toexpress the work done by a givenforce.Let a and b be two vectors,and suppose is the angle Definition Then the real numbera,b.between a and b,denote bya b,is called the dot product(scalar product,inner product)o

2、f a and b,denoted byaba b|a|(b)|b|(a).that is,|a|b|cos ora b|a|b|cos 3The Basic Properties of Dot Productand a a0a0;2a a|a|0,(2)Nonnegativity:a(bc)a ba c,(3)Commutative law:a bb a;(5)Associative law with the scalar multiple:(a)b(a b);kk(4)Distributive law:(ab)ca cb c,The dot products have the follow

3、ing basic properties:00 aa 0 (1)4The Component Representation of The Dot ProductSince the basic unit vectors i,j,k are perpendicular to one another,using the definition of the dot product we haveIfi jj kk i0.i ij jk k1 andandbijkxyzbbbaijkxyzaaathena b(ijk)(ijk)xyzxyzaaabbb.xxyyzza ba ba bExamples64

4、28.(1)(6)(2)(2)(2)(1)(1,2,2)(6,2,1)(1)231.(2)1i3j4ij21(4)(3)(1)25Some Applications of The Inner Product in Geometry(1)The norm(模,范数模,范数)of a vectorBy the definition of the norm of a vector,we have|a|a a 222.xyzaaa(2)The included angle(夹角夹角)between two nonzero vectorsLet a and b be two nonzero vector

5、s.We havea b|a|b|cos a bcos,|a|b|222222cosxxyyzzxyzxyza ba ba baaabbb a b ab0 xxyyz za ba ba b6Some Applications of The Inner Product in Geometry(3)The Projection(投影投影)then we haveaba b|a|(b)|b|(a),Since ba b(a)|b|a b andaa b(b)|a|b a and the projection vector of a onto b isba bproj ab(a b)b.|b|ther

6、efore the projection vector of b onto a isaa bproj ba(b a)a.|a|7Some Applications of The Inner Product in GeometryExample andb(1,2,2).Suppose that a(1,1,4)(1)Find a b(2)Find the angles between a and b(3)Find the projection of a onto b.Solution(1)a b 1 11(2)(4)2 9.222222(2)cosxxyyzzxyzxyza ba ba baaa

7、bbb 1,2 3.4 b(3)a b|b|(a)ba b(a)3.|b|Finish.Some Applications of The Inner Product in Geometry8Example and(1,2,2),D For the points(1,4,3),(3,1,2),(6,1,9)ABCprove that the line through A and B is perpendicular to the line through C and D.Solution(31,14,23)(2,3,1).AB (16,21,29)(5,1,7).CD (2,3,1)(5,1,7

8、)10370.AB CD So,the line through A and B is perpendicular to the line through C and D.Finish.9Some Applications of The Inner Product in GeometryExample Prove the Cauchy inequality:,(1,2,3);iia bR iLet112233322111i iiiiiia bab Proofand123b(,).b b b Let the vector123a(,)a a a Since a b|a|b|cos,we have

9、|a b|a|b|.By the component representation of dot product,we will obtain theCauchy inequality.Finish.10The Vector Product of Two Vectors in SpaceWe start with two nonzero vectors u and v in space.If u and v are notparallel,they determine a plane.We select a unit vector n perpendicularto the plane by

10、the right-hand rule.This means that we choose n tobe the unit(normal)vector that points the way your right thumb points when your fingers curl through the angle from u to v.can be defined uv Then the vector product as following.11Definition Vector(Cross,outer)Product(向量积向量积,叉积叉积,外积外积)sinuv(|u|v|)nTh

11、e vector product of u and v is often called the crossmultiple of n.uv.product of u and v because of the cross in the notationis orthogonal to both u and v because it is scalarThe vectoruv Since the sines of 0 and are both zero,it makes sense to define thecross product of two parallel nonzero vector

12、to be 0.to be zero.If one or both of u and v are zero,we also defineuv The Vector Product of Two Vectors in Space12The Vector Product of Two Vectors in SpaceProof Two vectors a and b are parallel(or collinear)if and only if We assume that a and b are both nonzero vectors.,If a=0(or b=0),then this co

13、nclusion obviously holds.(,)0a b or0.a b Theoremsin(,)0.a b /0.aba b that is,Two vectors aand b are parallel(or collinear)if and only if We have that,13Properties of the Vector ProductIf u,v and w are any vectors and r,s are scalars,then(1)Anti-commutative law u vv u;(3)Distributive law(vw)uv uw u.u

14、(vw)u vu w;(2)Associative law with respect to the scalar multiple(u)(v)()(u v);ssrr(u)vu(v)(u v);rrr14The Component Representation of the Vector ProductThen the distributive laws and the rules for multiplying i,j,and123123uijk,vijk.uuuvvvSuppose thatk tell us that123123u v(ijk)(ijk)uuuvvv1 11 21 32

15、12 22 33 13 23 3i iiji kj ij jj kk ikjk ku vu vu vu vu vu vu vu vu v 2 33 21 33 11 22 1()i()j()k.u vu vu vu vu vu v233213311221uv()i()j()k.u vu vu vu vu vu v15The Component Representation of the Vector Product233213311221uv()i()j()ku vu vu vu vu vu vThe terms in the last line are the same as the ter

16、ms in the expansionof the symbolic determinant123123ijk.uuuvvv16The Component Representation of the Vector ProductSolutionIfv4i3j k,andu2ij k andv u.findu v ijkuv211431 112121ijk3141432i6j10k.vu(uv)2i6j10k.Finish.17The Component Representation of the Vector ProductSolutionLet be the angle between th

17、e vectorsv2ij2k,andu6i2j3kfindijkuv623212Example 236362ijk1222217i6j10k.222(7)(6)(10)|uv|37sin.|u|v|77 5 Finish.sin.18The Geometric Meaning of the Norm of the Vector Productisu v Because n is a unit vector,the magnitude of|u v|u|v|sin|n|u|v|sin.This is the area of the parallelogramdetermined by u an

18、d v,|u|being thebase of the parallelogram and|v|sin|the height.sinu v(|u|v|)n19The Component Representation of the Vector ProductSolutionFind the area of the triangle whose vertices are(1,1,1),(2,0,1),(1,1,3).ABC Since bparallelogram with adjacent sides AB and AC,that isThe area S of the triangle AB

19、C is half the area of the224,ijk 144166.2S Example 1|2SABAC(1,1,0)(2,2,2)ABAC 11022 2ijk Finish.We have 20 Vector ProductExample Find the line speed vector v at any point P on the body.SolutionWe take a vector w in the axis l,suchand its positive direction is determined|,thatLet O be a point on the

20、axisby the right-hand rule.l,then the line speed0|v|.P P uuu vLetr;OP uuu vThe line speed vector v0|r|sin(,r).P P uuu vthenis perpendicular to both w and r,and w,r,v satisfiesTherefore the right-hand rule.vr.A rigid body rotates around a fixed axis l with angular velocity w.Finish.21TorqueWhen we tu

21、rn a bolt by applying a force F to a wrench,the torque weproduce acts along the axis of the bolt to driveThe magnitude of the torquethe bolt forward.depends on how far out on the wrench theforce is applied and on how much of theforce is perpendicular to the wrench at theThe number we use topoint of

22、application.measure the magnitude is the product of thelength of the lever arm r and the scalar componentof F perpendicular to r.22TorqueIn the right figure,we haveIt is well known that if the force F is parallelto the wrench,the torque produced is zero.|r|F|sin,Magnitude of torque vector|rF|.orIf w

23、e let n be a unit vector alongthe axis of the bolt in the direction of thetorque,then a complete description of theorTorque vectorrF,torque vector is(|r|F|sin)n.23Triple Scalar or Box ProductDefinition Triple Scalar or Box Product(uv)w Suppose u,v and w are three vectors,then the productis called th

24、e triple scalar product of u,v and w.Sometimes the triple scalar product can be denoted byabc(ab)c.|(uv)w|uv|w|cos|,It is easy to see from the formulathe absolute value of the product is the volume of the parallelepipeddetermined by u,v and w.24The Geometric Meaning of the Triple Scalar Product25The

25、 Component Representation of The Triple Scalar ProductThe triple scalar product can be evaluated as a determinant:231312123231312uuuuuuwwwvvvvvv231312231312(uv)wijkwuuuuuuvvvvvv123123123.uuuvvvwww 26The Properties of Triple Scalar ProductBy means of the properties of the determinants,it is easy to obtain thefollowing properties of the triple scalar product:(uv)w(vu)w.(2)(1)(uv)w(vw)u(wu)v.(3)u,v and w are coplanar if and only if(uv)w0.Triple Scalar Product27Find the volume of the parallelepiped whose edges are,23,2.aijk bij cij ()Vabc123123123111()230210aaaab cbbbccc Solution238.21 8.V

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|