1、第一课时第一课时1.4 1.4 正弦型函数正弦型函数 问题提出问题提出1.1.正弦函数正弦函数y=siny=sinx的定义域、值域分别的定义域、值域分别是什么?它有哪些基本性质?是什么?它有哪些基本性质?2.2.正弦曲线有哪些基本特征?正弦曲线有哪些基本特征?y-1xO123456-2-3-4-5-6-4.4.、A A是影响函数图像形态的重要是影响函数图像形态的重要参数,对此,我们分别进行探究参数,对此,我们分别进行探究.3.3.正弦函数正弦函数y=siny=sinx是最基本、最简单的是最基本、最简单的三角函数,在物理中,简谐运动中的单三角函数,在物理中,简谐运动中的单摆对平衡位置的位移摆对平
2、衡位置的位移y y与时间与时间x的关系、的关系、交流电的电流交流电的电流y y与时间与时间x的关系等都是形的关系等都是形如如 的函数的函数.我们需要了解我们需要了解它与函数它与函数y=siny=sinx的内在联系的内在联系.)sin(xAy探究一:对探究一:对 的图像的影响的图像的影响)sin(xy思考思考1 1:函数周期是多少?函数周期是多少?你有什么办法画出该函数在一个周期内你有什么办法画出该函数在一个周期内的图像?的图像?)3sin(xy67622oy yx x233235)3sin(xy思考思考2 2:比较函数比较函数 与与 的图象的形状和位置,你有什么发现?的图象的形状和位置,你有什
3、么发现?xysin)3sin(xy函数函数 的图像,可以看作是的图像,可以看作是把曲线把曲线 上所有的点向左平移上所有的点向左平移个单位长度而得到的个单位长度而得到的.)3sin(xyxysin367622oy yx x233235)3sin(xysi nyx=思考思考3 3:用用“五点法五点法”作出函数作出函数 在一个周期内的图像,比较在一个周期内的图像,比较它与函数它与函数 的图像的形状和位置,的图像的形状和位置,你又有什么发现?你又有什么发现?)3sin(xyxysin)3sin(xy337346116522oy yx x2si nyx=思考思考4 4:一般地,对任意的一般地,对任意的(
4、0),),函数函数 的图像是由函数的图像是由函数 的图像经过怎样的变换而得到的?的图像经过怎样的变换而得到的?)sin(xyxysin 的图像,可以看作是把正的图像,可以看作是把正弦曲线弦曲线 上所有的点向左(当上所有的点向左(当 0 0时)或向右(当时)或向右(当 0 0时)平行时)平行移动移动|个单位长度而得到个单位长度而得到.)sin(xyxysin思考思考5 5:上述变换称为上述变换称为平移变换平移变换,据此,据此理论,函数理论,函数 的图像可以看的图像可以看作是由作是由 的图像经过怎样变换而的图像经过怎样变换而得到?得到?)6sin(xyxysin函数函数 的图像,可以看作是的图像,
5、可以看作是把曲线把曲线 上所有的点向右平移上所有的点向右平移 个单位长度而得到的个单位长度而得到的.xysin)6sin(xy6探究二:(探究二:(0 0)对)对 的图像的影响的图像的影响)sin(xy思考思考1 1:函数函数 周期是多少?周期是多少?如何用如何用“五点法五点法”画出该函数在一个周画出该函数在一个周期内的图像?期内的图像?)32sin(xy22o oy yx x2)32sin(xy1276 12365思考思考2 2:比较函数比较函数 与与 的图像的形状和位置,你有的图像的形状和位置,你有什么发现?什么发现?)32sin(xy)3sin(xy353)3sin(xy22o oy y
6、x x2)32sin(xy1276 12365函数函数 的图像,可以看作是的图像,可以看作是把把 的图像上所有的点横坐的图像上所有的点横坐标缩短到原来的标缩短到原来的 倍(纵坐标不变)而倍(纵坐标不变)而得到的得到的.)32sin(xy)3sin(xy12353)3sin(xy22o oy yx x2)32sin(xy1276 12365思考思考3 3:用用“五点法五点法”作出函数作出函数 在一个周期内的图像,比较它与函数在一个周期内的图像,比较它与函数 的图像的形状和位置,你又的图像的形状和位置,你又有什么发现?有什么发现?cos)3sin(xy)321sin(xy353)3sin(xy)3
7、21sin(xy22o oy yx x2332 332 3437310函数函数 的图像,可以看作是的图像,可以看作是把把 的图像上所有的点横坐标的图像上所有的点横坐标伸长到原来的伸长到原来的2 2倍(纵坐标不变)而得倍(纵坐标不变)而得到的到的.)3sin(xy)321sin(xy353)3sin(xy)321sin(xy22o oy yx x2332 332 3437310思考思考4 4:一般地,对任意的一般地,对任意的 (0),),函数函数 的图像是由函数的图像是由函数 的图象经过怎样的变换而的图象经过怎样的变换而得到的?得到的?kZ)sin(xy)sin(xy函数函数 的图像,可以看作是
8、的图像,可以看作是把函数把函数 的图像上所有点的的图像上所有点的横坐标缩短(当横坐标缩短(当 1 1时)或伸长(当时)或伸长(当0 0 1 1时)到原来的时)到原来的 倍(纵坐标不变)倍(纵坐标不变)而得到的而得到的.)sin(xy)sin(xy12p思考思考5 5:上述变换称为上述变换称为周期变换周期变换,据此,据此理论,函数理论,函数 的图像可以看的图像可以看作是把函数作是把函数 的图像进行怎的图像进行怎样变换而得到的?样变换而得到的?)6sin(xy)632sin(xy函数函数 的图像,可以看作是的图像,可以看作是把把 的图像上所有的点横坐标的图像上所有的点横坐标伸长到原来的伸长到原来的
9、1.51.5倍(纵坐标不变)而倍(纵坐标不变)而得到的得到的.)632sin(xy)6sin(xy思考思考6 6:函数函数 的图像可以看的图像可以看作是把函数作是把函数 的图像进行怎样变的图像进行怎样变换而得到的?换而得到的?xysin)632sin(xy)632sin(xy函数函数 的图像,可以看作是的图像,可以看作是先把先把 的图像向右平移的图像向右平移 ,再把再把图象上所有的点的横坐标伸长到原来的图象上所有的点的横坐标伸长到原来的1.51.5倍(纵坐标不变)而得到的倍(纵坐标不变)而得到的.si nyx=6理论迁移理论迁移 例例1 1 要得到函数要得到函数 的图像,的图像,只需将函数只需
10、将函数 的图像的图像 ()53sin(xyA A向左平移个向左平移个 单位单位 B B向右平移个向右平移个 单位单位 C C向左平移个向左平移个 单位单位 D D向右平移个向右平移个 单位单位515515xy3sinD D 例例2 2 画出函数画出函数 的简图,并的简图,并说明它是由函数说明它是由函数 的图像进行怎的图像进行怎样变换而得到的?样变换而得到的?)42sin(xyxysin22o oy yx x28 8783885)42sin(xy小结作业小结作业1.1.函数函数 的图像可以由函数的图像可以由函数 的图像经过平移变换而得的图像经过平移变换而得到,其中平移方向和单位分别由到,其中平移方向和单位分别由 的符的符号和绝对值所确定号和绝对值所确定.)sin(xyxysin2.2.对函数对函数 的图像作周期变换,的图像作周期变换,它只改变它只改变x的系数,不改变的系数,不改变的值的值.)sin(xy 3.3.函数函数 的图的图像像可以由函可以由函数数 的图的图像像通过平移、伸缩变换通过平移、伸缩变换而得到,但有两种变换次序,不同的变而得到,但有两种变换次序,不同的变换次序会影响平移单位换次序会影响平移单位.)sin(xyxysin 4.4.余弦函数余弦函数 的图像变换与的图像变换与正弦函数类似,可参照上述原理进行正弦函数类似,可参照上述原理进行.)cos(xy
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。