1、北师大版数学八年级下册第二章第五节一元一次不等式与一次函数课时练习一、选择题(共10题)1.一次函数y=2x-4与x轴的交点坐标是(2,0),那么不等式2x-40的解集应是( )A.x 2 B.x2 C.x2 D.x2答案:A解析:解答:因为一次函数y=2x-4与x轴的交点坐标是(2,0),所以不等式2x-40的解集应是x 2 ;故答案是A选项 分析:考查一元一次不等式与一次函数,不等式的解集就是一次函数的函数值小于等于0的自变量x的取值范围2.如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,5)两点,则不等式-kx-b0的解集为( )A.x-3 B.x-3 C.x3 D.x3答案:A
2、解析:解答:观察图象可知,当x-3时,直线y=kx+b落在x轴的上方,即不等式kx+b0的解集为x-3,-kx-b0kx+b0,-kx-b0解集为x-3故答案是A选项分析:注意本题的关键是数形结合,学会观察图像3. 一次函数(是常数,)的图象如图所示,则不等式的解集是( )ABCD答案:A解析:从图像观察可知,不等式时,自变量x的取值范围是,故答案是A选项分析:考查一次函数与一次不等式的联系4. 如图,一次函数的图象经过A、B两点,则关于x的不等式的解集( )ABCD答案:C解析:解答:从图像可以观察得出当函数值小于0的时候,自变量x的取值范围是x小于2,故答案是C选项分析:本题考查从函数图像
3、来得出不等式的解集5. 已知一次函数的图象如图所示,当时,的取值范围是( )ABCD答案:C解析:解答:从图像可以看出当自变量时,y的取值范围在x轴的下方,故,所以答案是C选项分析:本题考查自变量的取值范围一定时,判断函数值得取值范围6.如图,直线交坐标轴于A,B两点,则不等式的解集是()A. x2 B. x3 C. x2 D. x3xyA(2,0)答案:A解析:解答:通过观察图像可以得出当函数等于0时候,与x轴的交点横坐标是2,在其交点的左侧函数的图像在x轴上方,故满足函数值大于0,所以答案选择A选项分析:本问题的解决方法可以通过观察函授图像来解决问题,使得函数的图像在x轴的上方,满足函数值
4、大于0时横坐标的取值范围7.已知关于x的不等式ax10(a0)的解集是x1,则直线yax1与x轴的交点是( )A(0,1) B(1,0) C(0,1) D(1,0)答案:D解析:解答:因为关于x的不等式ax10(a0)的解集是x1,所以可以解的a的值是1,所以直线yx1与x轴的交点函数值是0,即解的x=1,故交点坐标是(1,0);故答案是D选项分析:考查一元一次不等式与一次函数的联系8. 直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为( )A. x1 B. x1 C. x2 D. 无法确定答案:B解析:解答:通过观察函数图像可知要使需要看图像在上方时候横坐标的取值范围
5、,可以得出当x1时候满足条件;故答案是B选项分析:注意通过观察函数图像得出答案9. 已知函数y8x11,要使y0,那么x应取( )A.xB.x C.x0D.x0答案:A解析:解答:要使 y0,即8x110,解的x分析:考查一元一次不等式和一次函数的联系10. 已知一次函数ykxb的图像,如图所示,当x0时,y的取值范围是( )Ay0 By0 C2y0 Dy2答案:D解析:解答:通过观察图像可以知道当x=0时候函数值是2,所以当故答案是当x0时,y的取值范围是y2,故答案是D选项分析:注意图形结合来解决问题二、填空题(共10题)11. 一次函数的图象如图所示,当时,的取值范围是_答案:解析:解答
6、:从图像可以知道当y小于0的时候,x的取值范围是x大于2,故答案是分析:本题考查从函数图形得出不等式的解集12. 如图,直线与轴交于点,则时,的取值范围是_答案:解析:解答:从图像可以观察当y大于0的时候,x的取值范围是,故答案是分析:本题考查的观察函数图像可以得到自变量x的取值范围,即不等式的解集13. 已知2xy0,且x5y,则x的取值范围是_答案:x5解析:解答:由2xy0,可以得到y=2x,代入 x5y可已转化为x52x,可以解得x5分析:本题的关键是把不等式转化为一元一次不等式14. 已知关于x的不等式kx20(k0)的解集是x3,则直线ykx2与x轴的交点是_答案:(3,0) 解析
7、:解答:因为不等式kx20(k0)的解集是x3,所以可以求得k的值是,将k的值代入ykx2,得到yx2 ,与x轴的交点是纵坐标是0,即0=x2,解得x=3,所以坐标是(3,0)分析:解决本题的关键是求得k的值,以及注意和x轴的交点纵坐标是015. 若是关于x的一元一次不等式,则m的值为 答案:0解析:解答:一元一次不等式的未知数的次数是1次,所以2m+1=1,即m=0分析:考查一元一次不等式的基本概念16. 直线与轴交于点,则时,的取值范围是_答案:x-4解析:解答:根据题意可以知道一次函数图像是上升的,所以当函数值大于0时即0,所以答案是x-4分析:注意观察图像判断自变量的取值范围17. 不
8、等式的解集是,则的取值范围答案:a3解析:解答:根据不等式的两边同时乘除负数时候不等号的方向发生改变,所以a-30,解得a3分析:注意解不等式的时候变号的情况18. 如果三角形的三边长度分别为,则的取值范围是_答案:214解析:解答:根据三角形的三边关系可以知道两边之和大于第三边,两边之差小于第三边,可以得到不等式3a+4a14,4a-3a14,即可以解得214分析:本题的关键是三角形的两边之和大于第三边,两边之差小于第三边19. 若,则答案:大于等于解析:解答:因为是非负数,即大于等于0,当大于0时候根据不等式的性质可以知道不等号不发生改变;当等于0时候,即两边是等于的关系 分析:本题是考查
9、不等式的基本性质20. 若是关于的一元一次不等式,则的取值是答案:1解析:解答:根据一元一次不等式的基本概念可以知道,可以解得,但是 ,所以m的取值只能是1分析:考查如何过一个顶点作对角线三、解答题(共5题)21. 已知,当时,x的取值范围是?答案:解答:因为,既可以转化为不等式,经过解得不等式可以得到 解析:分析:本题考查两个函数值大小的比较时自变量的取值范围,关键是转化为不等式22. 已知一次函数当取何值时,函数的值在与之间变化?答案:解答:本题可以转化为不等式-12,所以本题可以转化为不等式组解得不等式组的解集是x2解析:分析:本题解答过程的关键是根据题意把一次函数的函数值介于范围内时候转化为不等式组,然后解决问题23. 不等式的正整数解的和是多少?答案:解答:移项得2x+2x5+7 4x12 x3正整数解有1和2,它们的和为3.解析:分析:本题的关键是求得正整数解之和24. 已知y1=x+3,y2=3x4,交点坐标是(,)当x取何值时,y1y2?观察图像得出答案答案:解答:若y1y2,那么只需要观察函数y1的图像在函数y2的上方即可,当x取小于的值时,有y1y2解析:分析:考查一次函数与不等式的结合,注意观察图像25. .若两个一次函数:,问x取何值时,答案:解答:根据题意可知,此题可以等价于 0,即:0化简后得到6x38.答案:x解析:分析:注意此题转化成一元一次不等式
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。