ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:46KB ,
文档编号:5944569      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5944569.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(林田)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(圆锥曲线专题复习(一)参考模板范本.doc)为本站会员(林田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

圆锥曲线专题复习(一)参考模板范本.doc

1、 圆锥曲线专题复习(一)一、考纲再现1.了解圆锥曲线的实际背景,理解圆锥曲线在刻画现实世界和解决实际问题中的作用。2.掌握 椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)。3.了解抛物线、双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率)。4.理解数形结合的思想5.了解圆锥曲线的简单应用二、考情导航高频考点高考试题题型难易程度椭圆方程及其性质2014课标卷20、2014四川20解答题双曲线方程及其性质2014课表卷4、2014广东8选择题 抛物线性质及其性质2014课标卷10、2014湖南14选择题、填空题三、知识点归纳:几点警示:1

2、、三种曲线定义中的关键条件 2、待定系数法求曲线方程时,先定型再定量 3、(几何性质)数形结合思想的应用四、预习自测五、能力突破 椭圆方程及其性质:例1、 新课标全国卷 设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.要点总结:1、求椭圆方程通常有两种方法:定义法和待定系数法。焦点不确定时要分类讨论。2、求椭圆离心率时,只需求出abc的一个齐次方程,再结合b2=a2-c2,就可求e3、数形结合,画出合理草图练习:四川卷

3、已知椭圆C:1(ab0)的左焦点为F(2,0),离心率为.(1)求椭圆C的标准方程;双曲线方程及其性质:例2、江西卷 过双曲线C:1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为()A.1 B.1 C.1 D.1拓展提升:1、在研究双曲线的性质时,以实半轴、虚半轴为直角边所构成的直角三角形是值得关注的一个重要内容,双曲线的离心率涉及也较多,只需的到abc的一个方程,要注意e12、已知双曲线的标准方程求双曲线的渐近线时,只需要令标准方程中的“1”为“0”即可得到双曲线的渐近线方程练习、北京卷 设双曲线C的两个

4、焦点为(,0),(,0),一个顶点是(1,0),则C的方程为_抛物线方程及其性质:例3、新课标全国卷 设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,则|AB|()A. B6 C12 D7拓展提升:1、重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径。2、抛物线的标准方程有四种形式,在求解过程中,首先要根据题目描述的几何性质判断方程性质,若只能判断对称轴,而不能判断开口方向,可设为x2=ay或y=ax2(a0),然后利用待定系数法求解。练习、湖南卷 平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x1的距离相等若机器人接触不到过点P(1,0)且斜率为k的直线,则k的取值范围是_六、真题演练七、课时小结八、作业布置:完成对应练习卷

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|