ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:137KB ,
文档编号:5965880      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5965880.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(刘殿科)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文((高考数学备战专题)高考数学(理)二轮专题练习:解析几何(含答案).doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

(高考数学备战专题)高考数学(理)二轮专题练习:解析几何(含答案).doc

1、高考数学(理)二轮专题练习 解析几何1直线的倾斜角与斜率(1)倾斜角的范围为0,)(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切值叫这条直线的斜率k,即ktan (90);倾斜角为90的直线没有斜率;斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为k(x1x2);直线的方向向量a(1,k);应用:证明三点共线:kABkBC.问题1(1)直线的倾斜角越大,斜率k就越大,这种说法正确吗?(2)直线xcos y20的倾斜角的范围是_答案(1)错(2)0,)2直线的方程(1)点斜式:已知直线过点(x0,y0),其斜率为k,则直线方程为yy0k(xx0),它不包括垂直

2、于x轴的直线(2)斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为ykxb,它不包括垂直于x轴的直线(3)两点式:已知直线经过P1(x1,y1)、P2(x2,y2)两点,则直线方程为,它不包括垂直于坐标轴的直线(4)截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为1,它不包括垂直于坐标轴的直线和过原点的直线(5)一般式:任何直线均可写成AxByC0(A,B不同时为0)的形式问题2已知直线过点P(1,5),且在两坐标轴上的截距相等,则此直线的方程为_答案5xy0或xy603点到直线的距离及两平行直线间的距离(1)点P(x0,y0)到直线AxByC0的距离为d;(2)两平行线l

3、1:AxByC10,l2:AxByC20间的距离为d.问题3两平行直线3x2y50与6x4y50间的距离为_答案4两直线的平行与垂直l1:yk1xb1,l2:yk2xb2(两直线斜率存在,且不重合),则有l1l2k1k2;l1l2k1k21.l1:A1xB1yC10,l2:A2xB2yC20,则有l1l2A1B2A2B10且B1C2B2C10;l1l2A1A2B1B20.特别提醒:(1)、仅是两直线平行、相交、重合的充分不必要条件;(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线问题4设直线l1:xmy60和l2:(m2)x

4、3y2m0,当m_时,l1l2;当m_时,l1l2;当_时l1与l2相交;当m_时,l1与l2重合答案1m3且m135圆的方程(1)圆的标准方程:(xa)2(yb)2r2.(2)圆的一般方程:x2y2DxEyF0(D2E24F0),只有当D2E24F0时,方程x2y2DxEyF0才表示圆心为(,),半径为的圆问题5若方程a2x2(a2)y22axa0表示圆,则a_.答案16直线、圆的位置关系(1)直线与圆的位置关系直线l:AxByC0和圆C:(xa)2(yb)2r2(r0)有相交、相离、相切可从代数和几何两个方面来判断:代数方法(判断直线与圆方程联立所得方程组的解的情况):0相交;0相离;0相

5、切;几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则dr相离;dr相切(2)圆与圆的位置关系已知两圆的圆心分别为O1,O2,半径分别为r1,r2,则当|O1O2|r1r2时,两圆外离;当|O1O2|r1r2时,两圆外切;当|r1r2|O1O2|r1r2时,两圆相交;当|O1O2|r1r2|时,两圆内切;当0|O1O2|b0);焦点在y轴上,1(ab0)(2)双曲线标准方程:焦点在x轴上,1(a0,b0);焦点在y轴上,1(a0,b0)(3)与双曲线1具有共同渐近线的双曲线系为(0)(4)抛物线标准方程焦点在x轴上:y22px(p0);焦点在y轴上:x22py(p0)问题

6、8与双曲线1有相同的渐近线,且过点(3,2)的双曲线方程为_答案19(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切(2)直线与圆锥曲线相交时的弦长问题斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|或|P1P2|.(3)过抛物线y22px(p0)焦点F的直线l交抛物线于C(x1,y1)、D(x2,y2),则(1)焦半径|CF|x1;(2)弦长|CD|

7、x1x2p;(3)x1x2,y1y2p2.问题9已知F是抛物线y2x的焦点,A,B是该抛物线上的两点,|AF|BF|3,则线段AB的中点到y轴的距离为_答案解析|AF|BF|xAxB3,xAxB.线段AB的中点到y轴的距离为.易错点1直线倾斜角与斜率关系不清致误例1已知直线xsin y0,则该直线的倾斜角的变化范围是_错解由题意得,直线xsin y0的斜率ksin ,1sin 1,1k1,直线的倾斜角的变化范围是.找准失分点直线斜率ktan (为直线的倾斜角)在0,)上是不单调的且不连续正解由题意得,直线xsin y0的斜率ksin ,1sin 1,1k1,当1k0,解得k,故不存在被点A(1

8、,1)平分的弦正解2设符合题意的直线l存在,并设P(x1,y1)、Q(x2,y2),则式得(x1x2)(x1x2)(y1y2)(y1y2)因为A(1,1)为线段PQ的中点,所以将式、代入式,得x1x2(y1y2)若x1x2,则直线l的斜率k2.所以直线l的方程为2xy10,再由,得2x24x30.根据80,所以所求直线不存在1(2014安徽)过点P(,1)的直线l与圆x2y21有公共点,则直线l的倾斜角的取值范围是()A. B.C. D.答案D解析方法一如图,过点P作圆的切线PA,PB,切点为A,B.由题意知|OP|2,OA1,则sin ,所以30,BPA60.故直线l的倾斜角的取值范围是.故

9、D.方法二设过点P的直线方程为yk(x)1,则由直线和圆有公共点知1.解得0k.故直线l的倾斜角的取值范围是0,2(2014广东)若实数k满足0k9,则曲线1与曲线1的()A焦距相等 B实半轴长相等C虚半轴长相等 D离心率相等答案A解析因为0k0,n0)与曲线x2y2|mn|无交点,则椭圆的离心率e的取值范围是()A. B. C. D.答案D解析由于m、n可互换而不影响,可令mn,则则x2,若两曲线无交点,则x20,即m2n,则e ,又0e1,0e0,b0)的右焦点F向其一条渐近线作垂线,垂足为M,已知MFO30(O为坐标原点),则该双曲线的离心率为_答案2解析由已知得点F的坐标为(c,0)(c),其中一条渐近线方程为bxay0,则|MF|b,由MFO30可得cos 30,所以,所以e2.10(2014浙江)设直线x3ym0(m0)与双曲线1(a0,b0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|PB|,则该双曲线的离心率是_答案解析双曲线1的渐近线方程为yx.由得A(,),由得B(,),所以AB的中点C坐标为(,)设直线l:x3ym0(m0),因为|PA|PB|,所以PCl,所以kPC3,化简得a24b2.在双曲线中,c2a2b25b2,所以e.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|