ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:424KB ,
文档编号:6006279      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-6006279.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学解三角形方法大全(DOC 5页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学解三角形方法大全(DOC 5页).doc

1、解三角形1解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。以下若无特殊说明,均设的三个内角的对边分别为,则有以下关系成立:(1)边的关系:,(或满足:两条较短的边长之和大于较长边)(2)角的关系:, , (3)边角关系:正弦定理、余弦定理以及它们的变形板块一:正弦定理及其应用1正弦定理:,其中为的外接圆半径 2正弦定理适用于两类解三角形问题:(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解的可能),再计算第三角,

2、最后根据正弦定理求出第三边【例1】考查正弦定理的应用 (1)中,若,则_; (2)中,若,则_; (3)中,若,则_; (4)中,若,则的最大值为_。总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在中,已知、 (1)若为钝角或直角,则当时,有唯一解;否则无解。(2)若为锐角,则当时,三角形无解; 当时,三角形有唯一解; 当时,三角形有两解; 当时,三角形有唯一解实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式1余弦定理:在中,角的对边分别为,则有 余弦定理: , 其变式为:2余

3、弦定理及其变式可用来解决以下两类三角形问题:(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;(2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决3三角形的面积公式(1) (、分别表示、上的高);(2)(3) (为外接圆半径)(4);(5) 其中(6)(是内切圆的半径,是三角形的周长)【例】考查余弦定理的基本应用(1)在中,若,求;(2)在中,若,求边上的

4、高;(3)在中,若,求【例】(1)在中,若,则中最大角的余弦值为_(2)(10上海理)某人要制作一个三角形,要求它的三条高的长度分别为,则( ) A不能作出这样的三角形 B作出一个锐角三角形 C作出一个直角三角形 D作出一个钝角三角形(3)以为三边组成一个锐角三角形,则的取值范围为_【例】考查正余弦定理的灵活使用(1)在中,若,其面积,则_(2)在中,若,则_(3)(07天津理)在中,若,则_(4)(10江苏)在锐角中,若,则_【例】判断满足下列条件的三角形形状 (1); (2); (3); (4); (5),板块三:解三角形综合问题【例】(09全国2)在中,角的对边分别为、,求【例】(11西

5、城一模)在中,角的对边分别为,且, (1)当时,求角的度数; (2)求面积的最大值【例】在中,求的值和的面积【例】在中,角的对边分别为,已知,(1)若的面积等于,求;(2)若,求的面积【例5】(09江西理)在中,角的对边分别为,且,(1)求 (2)若,求【例】(09安徽理)在中,, (1)求的值; (2)设,求的面积 【例】(10辽宁理)在中,角的对边分别为,且 (1)求的大小; (2)求的最大值 【例】在中,角的对边分别为, (1)求的大小; (2)求的范围【例】(11全国2)设的内角的对边分别为,已知,求【江西理】在中,角的对边分别是,已知(1)求的值; (2)若,求边的值【11江西文】在中,角的对边分别是,已知(1)求的值; (2)若,求边的值

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|