1、 【类型综述】 线段和差的最值问题,常见的有两类: 第一类问题是“两点之间,线段最短” 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类 问题是“两点之间,线段最短”结合“垂线段最短” 【方法揭秘】 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流” (如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出 两条对称轴“反射镜面” (如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值 就是第三边的长如图 3,PA
2、 与 PB 的差的最大值就是 AB,此时点 P 在 AB 的延长线上,即 P 解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题 图 1 图 2 图 3 如图 4,正方形 ABCD 的边长为 4,AE 平分BAC 交 BC 于 E点 P 在 AE 上,点 Q 在 AB 上,那么BPQ 周长的最小值是多少呢? 如果把这个问题看作“牛喝水”问题,AE 是河流,但是点 Q 不确定啊来源:163文库 ZXXK 第一步,应用“两点之间,线段最短” 如图 5,设点 B 关于“河流 AE”的对称点为 F,那么此刻 PFPQ 的最小值是线段 FQ 第二步,应用“垂线段最短” 如图 6,在
3、点 Q 运动过程中,FQ 的最小值是垂线段 FH 这样,因为点 B 和河流是确定的,所以点 F 是确定的,于是垂线段 FH 也是确定的 图 4 图 5 图 6 【典例分析】 例 1 如图 1,二次函数 ya(x22mx3m2)(其中 a、m 是常数,且 a0,m0)的图像与 x 轴分别交于 A、B(点 A 位于点 B 的左侧) ,与 y 轴交于点 C(0,3),点 D 在二次函数的图像上,CD/AB,联结 AD过 点 A 作射线 AE 交二次函数的图像于点 E,AB 平分DAE (1)用含 m 的式子表示 a;来源:学科网 (2)求证: AD AE 为定值; (3)设该二次函数的图像的顶点为
4、F探索:在 x 轴的负半轴上是否存在点 G,联结 GF,以线段 GF、AD、 AE 的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点 G 即可, 并用含 m 的代 数式表示该点的横坐标;如果不存在,请说明理由 图 1 例 2 如图 1,已知抛物线的方程 C1: 1 (2)()yxxm m (m0)与 x 轴交于点 B、C,与 y 轴交于点 E, 且点 B 在点 C 的左侧来源:163文库 (1)若抛物线 C1 过点 M(2, 2),求实数 m 的值; (2)在(1)的条件下,求BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点 H,使得 BHEH 最小,
5、求出点 H 的坐标; (4)在第四象限内,抛物线 C1 上是否存在点 F,使得以点 B、C、F 为顶点的三角形与BCE 相似?若存 在,求 m 的值;若不存在,请说明理由 图 1 例 3 如图 1,抛物线 yax2bxc 经过 A(1,0)、B(3, 0)、C(0 ,3)三点,直线 l 是抛物线的对称轴来源:学+科+网 Z+X+X+K (1)求抛物线的函数关系式; (2)设点 P 是直线 l 上的一个动点,当PAC 的周长最小时,求点 P 的坐标;来源:163文库 图 1 例 4 如图 1,已知 A、B 是线段 MN 上的两点,4MN,1MA,1MB以 A 为中心顺时针旋转点 M, 以 B 为
6、中心逆时针旋转点 N,使 M、N 两点重合成一点 C,构成ABC,设xAB (1)求 x 的取值范围; (2)若ABC 为直角三角形,求 x 的值; (3)探究:ABC 的最大面积? 图 1 例 5 如图 1,在平面直角坐标系中,抛物线 yax22ax3a(a0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧) ,经过点 A 的直线 l:ykxb 与 y 轴负半轴交于点 C,与抛物线的另一个交点为 D,且 CD4AC (1)直接写出点 A 的坐标,并求直线 l 的函数表达式(其中 k、b 用含 a 的式子表示) ; (2)点 E 是直线 l 上方的抛物线上的动点,若ACE 的面积的最大
7、值为 5 4 ,求 a 的值; (3)设 P 是抛物线的对称轴上的一点,点 Q 在抛物线上,以点 A、D、P、Q 为顶点的四边形能否成为矩 形?若能,求出点 P 的坐标;若不能,请说明理由 图 1 备用图 【变式训练】 一、单选题 1如图,已知,以为圆心,长为半径作, 是上一个动点,直线交 轴于 点, 则面积的最大值是( ) A B C D 2如图,AB 为O 的直径,C 为O 上一点,其中 AB=4,AOC=120,P 为O 上的动点,连 AP,取 AP 中 点 Q,连 CQ,则线段 CQ 的最大值为( ) A3 B1+ C1+3 D1+ 3如图,矩形 ABCD 中,AB4,AD3,P 是边
8、 CD 上一点,将ADP 沿直线 AP 对折,得到APQ当射线 BQ 交线段 CD 于点 F 时,DF 的最大值是( ) A3 B2 C47 D45 4如图,由两个长为 ,宽为 的全等矩形叠合而得到四边形,则四边形面积的最大值是( ) A15 B16 C19 D20 5如图,在菱形 ABCD中,AB=6,A=135 ,点P是菱形内部一点,且满足,则 PC+PD 的最小值为( ) A B C6 D 6如图,在 ABC中,ABAC5,BC6,ADBC于D,点E,F分别在AD,AB是,则BEEF的最小值 是 A4 B4.8 C5 D5.4 7在 RtABC 中,ACB=90,AC=4,BC=8,D,
9、E 是 AB 和 BC 上的动点,连接 CD,DE 则 CD+DE 的最小值 为( ) A8 B C D 二、解答题 8问题发现: ( ) 如图,中, 点 是边上任意一点, 则的最小值为_ ( )如图,矩形中,点 、点 分别在、上,求的最小值 ( )如图,矩形中,点 是边上一点,且,点 是边上的任意一点, 把沿翻折,点 的对应点为点 ,连接、,四边形的面积是否存在最小值,若存在,求 这个最小值及此时的长度;若不存在,请说明理由 9问题提出:如图 1,在 RtABC中,ACB=90,CB=4,CA=6,C 半径为 2,P 为圆上一动点,连结 AP、 BP,求 AP+ BP 的最小值 (1)尝试解
10、决:为了解决这个问题,下面给出一种解题思路:如图 2,连接 CP,在 CB 上取点 D,使 CD=1, 则有,又PCD=BCP,PCDBCP,PD= BP,AP+ BP=AP+PD 请你完成余下的思考,并直接写出答案:AP+ BP 的最小值为 来源:163文库 (2)自主探索:在“问题提出”的条件不变的情况下, AP+BP 的最小值为 (3)拓展延伸:已知扇形 COD 中,COD=90,OC=6,OA=3,OB=5,点 P 是上一点,求 2PA+PB 的最小 值 10已知二次函数 y=x 2+2bx+c(b、c 为常数) ()当 b=1,c=3 时,求二次函数在2x2 上的最小值; ()当 c
11、=3 时,求二次函数在 0x4 上的最小值; ()当 c=4b 2时,若在自变量 x 的值满足 2bx2b+3 的情况下,与其对应的函数值 y 的最小值为 21,求 此时二次函数的解析式 11已知四边形 ABCD,ADBC,ABBC,AD=1,AB=2,BC=3 (1) 如图 1, 若 P 为 AB 边上一点以 PD, PC 为边作平行四边形 PCQD, 请问对角线 PQ 的长是否存在最小值? 如果存在,请求出最小值,如果不存在,请说明理由 (2)若 P 为 AB 边上任意一点,延长 PD 到 E,使 DE=PD,再以 PE,PC 为边作平行四边形 PCQE,请问对角 线 PQ 的长是否也存在
12、最小值?如果存在,请直接写出最小值,如果不存在,请说明理由 (3)如图 2,若 P 为直线 DC 上任意一点,延长 PA 到 E,使 AE=AP,以 PE、PB 为边作平行四边形 PBQE, 请问对角线 PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由 12(本题满分12分) (1) 【问题】 如图1, 点A为线段BC外一动点, 且BCa, 6AB 当点A位于_时线段AC 的长取得最大值,且最大值为_(用含a、b的式子表示) (2) 【应用】点A为线段B除外一动点,且3BC , 1AB 如图2所示,分别以AB、AC为边, 作等边三角形ABD和等边三角形ACE,连接CD、
13、BE 请找出图中与BE相等的线段,并说明理由 直接写出线段BE长的最大值 (3) 【拓展】如图3,在平面直角坐标系中,点A的坐标为2,0,点B的坐标为5,0,点P为线段 AB外一动点, 且2PA, PMPB, 90BPM请直接写出线段AM长的最大值及此时点P的 坐标 13如图,已知中,边上的高,四边形为内接矩形 当矩形是正方形时,求正方形的边长 设,矩形的面积为 ,求 关于 的函数关系式,当 为何值时 有最大值,并求出最大值 14 如图, 抛物线与坐标轴相交于 、三点,是线段上一动点 (端点除外) , 过 作, 交于点 ,连接 直接写出 、 、 的坐标;来源:163文库 求抛物线的对称轴和顶点
14、坐标; 求面积的最大值, 并判断当的面积取最大值时, 以、为邻边的平行四边形是否为菱形 15如图,抛物线过 O、A、B 三点,A(4,0)B(1,-3) ,P 为抛物线上一点,过点 P 的直线 y=x+m 与对称 轴交于点 Q. (1)直线 PQ 与 x 轴所夹锐角的度数,并求出抛物线的解析式. (2)当点 P 在 x 轴下方的抛物线上时,过点 C(2,2)的直线 AC 与直线 PQ 交于点 D,求: PD+DQ 的最大值; PD.DQ 的最大值. 16问题提出 (1)如图 1,点 A 为线段 BC 外一动点,且 BC=a,AB=b,填空:当点 A 位于 时,线段 AC 的长取得最 大值,且最
15、大值为 (用含 a,b 的式子表示) 问题探究 (2)点 A 为线段 BC 外一动点,且 BC=6,AB=3,如图 2 所示,分别以 AB,AC 为边,作等边三角形 ABD 和等 边三角形 ACE,连接 CD,BE,找出图中与 BE 相等的线段,请说明理由,并直接写出线段 BE 长的最大值 问题解决: (3)如图 3,在平面直角坐标系中,点 A 的坐标为(2,0) ,点 B 的坐标为(5,0) ,点 P 为线段 AB 外一 动点,且 PA=2,PM=PB,BPM=90,求线段 AM 长的最大值及此时点 P 的坐标 如图 4,在四边形 ABCD 中,AB=AD,BAD=60 ,BC=42,若对角
16、线 BDCD 于点 D,请直接写出对角 线 AC 的最大值 17如图 14,AB是O的直径,,2ACBC AB,连接AC (1)求证: 0 45CAB; (2)若直线l为O的切线,C是切点,在直线l上取一点D,使,BDAB BD所在的直线与AC所在的 直线相交于点E,连接AD 试探究AE与AD之间的数量关系,并证明你的结论; EB CD 是否为定值?若是,请求出这个定值;若不是,请说明理由 18.如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不与点AB、及AB的中点F重合), 连接OM.过点M作MEAB于点E,以BE为边在半圆同侧作正方形BCDE,过M点作O的切线 交射线DC于点N,
17、连接BM、BN. (1)探究:如左图,当M动点在AF上运动时; 判断OEMMDN是否成立?请说明理由; 来源:163文库 设 MENC k MN ,k是否为定值?若是,求出该定值,若不是,请 说明理由; 设MBN,是否为定值?若是,求出该定值,若不是,请说明理由; (2)拓展:如右图,当动点M在FB上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由) 19.已知抛物线3 2 bxxy(b是常数)经过点)0 , 1(A. (1)求该抛物线的解析式和顶点坐标; (2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P. 当点P落在该抛物线上时,求m的值; 当点P落在第二象限内, 2 AP取得最小值时,求m的值. 20.如图, 在平面直角坐标系中, 抛物线 1 2 bxaxy 交y轴于点A, 交x轴正半轴于点 )0 , 4(B , 与过A 点的直线相交于另一点 ) 2 5 , 3(D ,过点D作 xDC 轴,垂足为C. (1)求抛物线的表达式; (2)点P在线段OC上(不与点O、C重合) ,过P作xPN 轴,交直线AD于M,交抛物线于点N, 连接CM,求PCM面积的最大值; (3)若P是x轴正半轴上的一动点,设OP的长为,是否存在,使以点NDCM、为顶点的四边形是 平行四边形?若存在,求出的值;若不存在,请说明理由.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。