ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:768.50KB ,
文档编号:625238      下载积分:2.99 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-625238.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(安徽省马鞍山市2016-2017学年高一上学期期末数学试卷 Word版含解析.doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

安徽省马鞍山市2016-2017学年高一上学期期末数学试卷 Word版含解析.doc

1、 2016-2017 学年安徽省马鞍山市高一(上)期末数学试卷学年安徽省马鞍山市高一(上)期末数学试卷 一、选择题:每小题一、选择题:每小题 3 分,共分,共 36 分分 1若角 是第四象限角,则角 的终边在( ) A第一象限 B第二象限 C第三象限 D第四象限 2若角 的终边经过点 P(4,3) ,则 sin=( ) A B C D 3平面向量 =(1,2) , =(2,x) ,若 ,则 x=( ) A1 B1 C4 D4 4已知扇形的半径为 3,圆心角为,则扇形的弧长为( ) A3 B2 C360 D540 5若 cos()=,则 cos=( ) A B C D 6若菱形 ABCD 的边长

2、为 2,则|+|=( ) A2 B4 C D2 7在平行四边形 ABCD 中,对角线 AC 和 BD 的交点为 M,设= , = ,则下 列向量中与+相等的向量是( ) A B C D 8为了得到函数 y=tan(2x)的图象,可以将函数 y=tan2x 的图象( ) A向右平移个单位长度 B向右平移个单位长度 C向左平移个单位长度 D向左平移个单位长度 9已知向量 =(1,x) , =(x,4) ,若=| | |,则 x=( ) A2 B2 C0 D2 或 2 10定义在 R 上的函数 f(x)既是奇函数又是周期函数,若 f(x)的最小正周期 是 ,且 x(0,时,f(x)=cosx,则 f

3、()=( ) A B C D 11函数 f(x)=Asin(x+) (A0,0)的部分图象如图所示,则 f()= ( ) A B C D 12已知ABC, =, =,AD 与 CE 的交点为 G, = , = ,若 = + ,则 +=( ) A B C D 二、填空题:每小题二、填空题:每小题 4 分,共分,共 20 分分 13已知 =(2,1) , =(m,2) ,若 ,则 m= 14若 sin(+)= ,则 cos()= 15已知 cos= ,则= 16函数 y=的定义域是 17在ABC 中,已知=,则ABC 为 三角形 三、解答题:本大题共三、解答题:本大题共 5 个小题,满分个小题,满

4、分 44 分解答应写出必要的文字说明、证明分解答应写出必要的文字说明、证明 过过程或演算步骤程或演算步骤 18 ()计算:cos() ; ()已知 x,且 sinx= ,求 tanx 的值 19如图,锐角ABC 中, = , = ,点 M 为 BC 的中点 ()试用 , 表示; ()若| |=5,| |=3,sinBAC= ,求中线 AM 的长 20函数 f(x)=Asin(x) (A0,0)的最大值为 2,其图象相邻两条 对称轴之间的距离为 ()求函数 f(x)的最小正周期及解析式; ()求函数 f(x)的单调减区间 21把函数 y=sin(x)的图象向左平移个单位长度,再将图象上所有点的

5、横坐标缩短为原来的 倍(纵坐标不变)得到函数 f(x)的图象 ()写出函数 f(x)的解析式; ()若 x0,时,关于 x 的方程 f(x)m=0 有两个不等的实数根,求 实数 m 的取值范围 22如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点 A ( , ) ,B(,) ()求,夹角的余弦值; ()已知 C(1,0) ,记AOC=,BOC=,求 tan的值 2016-2017 学年安徽省马鞍山市高一(上)期末数学试卷学年安徽省马鞍山市高一(上)期末数学试卷 参考答参考答案与试题解析案与试题解析 一、选择题:每小题一、选择题:每小题 3 分,共分,共 36 分分 1若角 是

6、第四象限角,则角 的终边在( ) A第一象限 B第二象限 C第三象限 D第四象限 【考点】象限角、轴线角 【分析】 用不等式表示第四象限角 , 再利用不等式的性质求出 满足的不等式, 从而确定角 的终边在的象限 【解答】解: 是第四象限角, k360+270k360+360,kZ, 则k360360k360270,kZ, 令 n=k,nZ, 故有 n360360n360270,nZ, 则 的终边在第一象限 故选:A 2若角 的终边经过点 P(4,3) ,则 sin=( ) A B C D 【考点】任意角的三角函数的定义 【分析】由三角函数的定义可直接求得 sin 【解答】解:角 a 的终边经过

7、点 P(4,3) , sin= 故选 B 3平面向量 =(1,2) , =(2,x) ,若 ,则 x=( ) A1 B1 C4 D4 【考点】数量积判断两个平面向量的垂直关系 【分析】利用向量垂直的性质直接求解 【解答】解:平面向量 =(1,2) , =(2,x) , , =22x=0, 解得 x=1 故选:A 4已知扇形的半径为 3,圆心角为,则扇形的弧长为( ) A3 B2 C360 D540 【考点】弧长公式 【分析】利用弧长公式计算即可得答案 【解答】解:l=r=3=2 故选:B 5若 cos()=,则 cos=( ) A B C D 【考点】两角和与差的余弦函数 【分析】根据题意和诱

8、导公式化简即可 【解答】解:由题意得 cos()=cos=, 所以 cos=, 故选 C 6若菱形 ABCD 的边长为 2,则|+|=( ) A2 B4 C D2 【考点】向量的模 【分析】利用向量的运算法则将|+|化简,利用菱形 ABCD 的边长为 2 得 到向量模的值 【解答】解:菱形 ABCD 的边长为 2, |+|=|+|=|=2 故选:D 7在平行四边形 ABCD 中,对角线 AC 和 BD 的交点为 M,设= , = ,则下 列向量中与+相等的向量是( ) A B C D 【考点】向量在几何中的应用 【分析】由已知中平行四边形 ABCD 的两条对角线 AC、BD 交于点 M,M 是

9、 BD 的 中点,从而可求出与+相等的向量 【解答】解:平行四边形 ABCD 的两条对角线 AC、BD 交于点 M, M 是 BD 的中点, = , = , +=, 故选:D 8为了得到函数 y=tan(2x)的图象,可以将函数 y=tan2x 的图象( ) A向右平移个单位长度 B向右平移个单位长度 C向左平移个单位长度 D向左平移个单位长度 【考点】函数 y=Asin(x+)的图象变换 【分析】由条件利用函数 y=Atan(x+)的图象变换规律,可得结论 【解答】解:把 y=tan2x 向右平移个单位长度得到= 的图象, 故选:B 9已知向量 =(1,x) , =(x,4) ,若=| |

10、|,则 x=( ) A2 B2 C0 D2 或 2 【考点】数量积判断两个平面向量的垂直关系 【分析】利用向量的数量积公式及向量的模的定义求解 【解答】解:向量 =(1,x) , =(x,4) , =| | |, x+4x=, 解得 x=2 故选:B 10定义在 R 上的函数 f(x)既是奇函数又是周期函数,若 f(x)的最小正周期 是 ,且 x(0,时,f(x)=cosx,则 f()=( ) A B C D 【考点】函数的值 【分析】由已知得 f()=f()=f()=cos,由此能求出 结果 【解答】解:义在 R 上的函数 f(x)既是奇函数又是周期函数, f(x)的最小正周期是 ,且 x(

11、0,时,f(x)=cosx, f()=f()=f()=cos= 故选:C 11函数 f(x)=Asin(x+) (A0,0)的部分图象如图所示,则 f()= ( ) A B C D 【考点】由 y=Asin(x+)的部分图象确定其解析式 【分析】根据函数的最高点和最低点可得 A 的值,根据图象 T=, 可得 ,图象过(,)带入求解 ,可函数 f(x)的解析式可得 f() 的值 【解答】解:由图象知最高点为 ,最低点为,A= 根据图象 T=,=2 图象过(, )带入可得:, 得:=+2k, (kZ) =, (kZ) 那么:函数 f(x)= sin(2x+2k)= sin(2x) 当 x=时,即

12、f()= sin(2 )= 故选 A 12已知ABC, =, =,AD 与 CE 的交点为 G, = , = ,若 = + ,则 +=( ) A B C D 【考点】向量在几何中的应用 【分析】不妨令 B 为直角,AB=BC=3,则以 B 为坐标原点,建立坐标系,利用坐标 法,可得 + 的值 【解答】解:不妨令 B 为直角,AB=BC=3, 则以 B 为坐标原点,建立坐标系如图所示: 则= =(0,3) ,= =(3,0) , 直线 AD 的方程为:y=3x+3,直线 CE 的方程为:y= x+2, 故 G 点坐标为: ( ,) , 若= + ,则 3=,3= , 故 3(+)=, += ,

13、故选:D 二、填空题:每小题二、填空题:每小题 4 分,共分,共 20 分分 13已知 =(2,1) , =(m,2) ,若 ,则 m= 4 【考点】平行向量与共线向量 【分析】利用向量共线定理即可得出 【解答】解: ,m4=0,解答 m=4 故答案为:4 14若 sin(+)= ,则 cos()= 【考点】两角和与差的余弦函数;两角和与差的正弦函数 【分析】由条件利用诱导公式化简所给的三角函数式,可得结果 【解答】解:sin(+)= ,则 cos()=sin(+)=sin(+) = , 故答案为: 15已知 cos= ,则= 【考点】三角函数的化简求值 【分析】利用商的关系化切为弦得答案 【

14、解答】解:cos= , = 故答案为: 16函数 y=的定义域是 x| 【考点】函数的定义域及其求法 【分析】由根式内部的代数式大于等于 0,然后求解三角不等式得答案 【解答】解:由,的 sinx,解得: 函数 y=的定义域是x| 故答案为:x| 17在ABC 中,已知=,则ABC 为 等腰 三角形 【考点】三角形的形状判断 【分析】运用向量的运算和向量的平方即为向量模的平方,结合平方差公式,即 可判断三角形的形状 【解答】解:在ABC 中, =, 可得=0, 即为()=0, 即有()(+)=0, 即有 2=2, 即为| |2=| |2, 可得| |=| |, 可得三角形 ABC 为等腰三角形

15、 故答案为:等腰 三、解答题:本大题共三、解答题:本大题共 5 个小题,满分个小题,满分 44 分解答应写出必要的文字说明、证明分解答应写出必要的文字说明、证明 过程或演算步骤过程或演算步骤 18 ()计算:cos() ; ()已知 x,且 sinx= ,求 tanx 的值 【考点】同角三角函数间的基本关系;三角函数的化简求值 【分析】 (I)利用诱导公式即可得出 (II)利用同角三角函数基本关系式即可得出 【解答】解: ()cos()= ()x,且 sinx= , ,cosx= tanx= 19如图,锐角ABC 中, = , = ,点 M 为 BC 的中点 ()试用 , 表示; ()若| |

16、=5,| |=3,sinBAC= ,求中线 AM 的长 【考点】平面向量的基本定理及其意义;向量的模 【分析】 ()根据向量的加法以及中点的定义求出即可; ()求出BAC 的余弦值,从而求出 AM 的长即可 【解答】解: ()M 是 BC 的中点 = (+)= ( + ) ; ()sinBAC= ,ABC 是锐角三角形, cosBAC= , = (+2 +)= (25+253 +9)=13, |=,即中线 AM= 20函数 f(x)=Asin(x) (A0,0)的最大值为 2,其图象相邻两条 对称轴之间的距离为 ()求函数 f(x)的最小正周期及解析式; ()求函数 f(x)的单调减区间 【考

17、点】三角函数的周期性及其求法;正弦函数的单调性;正弦函数的对称性 【分析】 (1)由函数的最大值求出 A,由周期求出 ,可得函数的解析式 (2)由+2k2x2k+,kZ,求得 x 的范围,可得函数的单调减区 间 【解答】解: ()由题可得 =,T=, 又函数 f(x)的最大值为 2,A=2, f(x)=2sin(2x) , ()由+2k2x2k+,kZ, 得+kxk+,kZ, 函数单调递减区间+k,k+,kZ, 21把函数 y=sin(x)的图象向左平移个单位长度,再将图象上所有点的 横坐标缩短为原来的 倍(纵坐标不变)得到函数 f(x)的图象 ()写出函数 f(x)的解析式; ()若 x0,

18、时,关于 x 的方程 f(x)m=0 有两个不等的实数根,求 实数 m 的取值范围 【考点】函数 y=Asin(x+)的图象变换;由 y=Asin(x+)的部分图象确定其 解析式 【分析】 ()根据图象左右平移和横向伸缩变换的原则可得到解析式; ()方程 f(x)m=0 有两个不等实数根等价于直线 y=m 与 y=sin( )有两个交点,结合函数图象可知 m 范围 【解答】解: ()函数 y=sin(x)的图象向左平移个单位长度,得到 y=sin (x) ,再将图象上所有点的横坐标缩短为原来的倍(纵坐标不变)得到函 数 f(x)的图象, ()由 f(x)m=0 得 sin(2x)=m 令 2x

19、,由 x得 方程 f(x)m=0 有两个不等实数根等价于直线 y=m 与 y=sin() 有两个交点,结合函数图象可知 22如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点 A ( , ) ,B(,) ()求,夹角的余弦值; ()已知 C(1,0) ,记AOC=,BOC=,求 tan的值 【考点】数量积表示两个向量的夹角;两角和与差的正切函数 【分析】 ()先求出向量,的坐标,再跟它们的夹角的余弦值 cos AOB=,计算求得结果 ()设AOB 的平分线 OD 交单位圆于点 D,则COD=,求得的坐标, 根据=0,求得 tan的值 【解答】解: ()在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上 有两点 A( , ) ,B(,) , =( , ) ,=(,) ,|=|=1, ,夹角的余弦值 cosAOB= ()设AOB 的平分线 OD 交单位圆于点 D,则COD=, 从而 D(cos,sin) ,=(cos,sin ) , 连接 AB,可知 ODAB,即=0 =(,) , (cos,sin)(, )=cos+sin=0, tan= 2017 年年 3 月月 9 日日

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|