ImageVerifierCode 换一换
格式:PPT , 页数:48 ,大小:1.96MB ,
文档编号:6311041      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-6311041.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(热质交换原理与设备cha2教学课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

热质交换原理与设备cha2教学课件.ppt

1、热质交换原理与设备cha(2)幻灯片PPT 本课件本课件PPT仅供大家学习使用仅供大家学习使用 学习完请自行删除,谢谢!学习完请自行删除,谢谢!本课件本课件PPT仅供大家学习使用仅供大家学习使用 学习完请自行删除,谢谢!学习完请自行删除,谢谢!本课件本课件PPT仅供大家学习使用仅供大家学习使用 学习完请自行删除,谢谢!学习完请自行删除,谢谢!本课件本课件PPT仅供大家学习使用仅供大家学习使用 学习完请自行删除,谢谢!学习完请自行删除,谢谢!相似解的理解(求解的基本思想):设方程:ax+by-cz=0 a,b,c为常数,x,y,z为未知数则x的解可以表示为:x=(cz-by)/a(1)设另一个相

2、似方程:dr+es-ft=0,与前一方程形式一样d,e,f为常数,r,s,t为未知数,要求解r?我们并不去直接求解r,而是根据前一方程解的形式(1)套用,可以得到:r=(ft-es)/d完全从形式相似的角度去套用2.3.6平板对流传质问题的分析求解(相似解)(l)边界层对流传质方程能量方程边界传质方程边界存在的问题:边界条件不一致。如何使方程和边界条件完全一致?(2)边界层对流传质方程的求解边界层能量方程求解思想无因次边界条件为ts-壁体温度;t0-主体温度xuyxuf方程详细求解过程参考王厚华传热学P117传质微分方程作类似的转换无因次边界条件为决定了通解只相差常数无因次方程完全一样边界条件

3、完全一样决定了无因次方程定解是完全一样的xuy热量传递方程的解类似的传质方程也有其形式上一样的解?无因次形式的特解2.3.5对流传质过程的相关准则数对流传热的解用准则数(无量纲)表示;对流传质的解也可以用形式相似准则数来表示;根据对流传热的准则数,改换组成准则数的各相应物理量,则可导出对流传质的相关准则数。(1)施密特准则数(SC)对应于对流传热中的普朗特准则数(Pr)iDSc/Pr准则数为联系动量传输与热量传输的一种相似准则运动粘度导温系数Sc准则数为联系动量传输与质量传输的相似准则运动粘度扩散系数(2)宣乌特准则数(SherwoodSh)对应于对流传热中的努谢尔特准则数(NusseltNu

4、)边界导热热阻与对流换热热阻之比与Nu准则数相对应的Sh准则数,以流体的边界扩散阻力与对流传质阻力之比来标志过程的相似特征(3)传质的斯坦登准则数(Stanton-Stm)对应于对流传热中的斯坦登准则数StSt准则数是对流换热的 Nu数、Pr数以及 Re数的三者的综合准则与St准则数相对应的Stm数是Sh数、Sc数以及Re数三者的综合准则ReuL/v热量传递方程的解 传质方程对应解的形式两者的无因次形式特解应完全一样将0*00yAAByAAsAAsABmxdydCDdyCCCCdDh3121Re332.0ScDxhShxABmxx3121Re332.0ScxDhxABmx00AAsyAABmx

5、CCdydCDh长度为L的整个板面的平均传质系数dxhLhLmxm013121Re664.0ScLDhLABm3121Re664.0ScDLhShLABmm属层流m51026.12.3.6.2管内稳态层流对流传质其求解思路与平板完全一致求解问题分两种情况:l)流体一进入管中便立即进行传质,在管进口段距离内,速度分布和浓度分布都在发展,如图(a)所示。Zr2)流体进管后,先不进行传质,待速度分布充分发展后,才进行传质,如图(b)所示。Zr分析对象:速度边界层和浓度边界层均达到充分发展由柱坐标系的对流传质方程可得:模型简化过程0ACb.在a.稳态r 方向上流速为零0ru0u c.在方向上对称,质量

6、扩散为零01222ACrd.在z方向上的扩散传质远小于r方向zCrCAA因此忽略z方向的扩散增量022zCA流动传质相关项扩散传质相关项综合所有简化条件,简化可得速度分布已充分发展阶段(稳定)将速度带入上式可得:bu管内平均流速ir管半径参考龙天渝:流体力学速度分布已充分发展后的管内层流传质方程,与管内传热方程完全一致边界条件可分为以下两类(与传热学中管内类似处理参考任泽霈对流换热P85,求解过程和平板传质求解过程类似,对方程和边界作无因次处理,最后采用无量纲准则数表达结果,过程将在高等传热学中讲解,此处只介绍结果):1)组分A在管壁处的浓度CAs维持恒定(对应温度)。2)组分A在管壁处的传质

7、通量NAs维持恒定(对应热流)组分A在管壁处的浓度CAs维持恒定时,与管内充分发展的恒壁温传热类似(与前面的思路一样,套用管内传热理论),此时Nu为常数。66.3hdNu66.3ABmDdhSh 组分A在管壁处的传质通量NAs维持恒定时,与管内恒壁面热流传热类似,此时Nu也为常数由此可见,在速度分布和浓度分布均充分发展的条件下,管内层流传质时,壁面浓度或传质通量维持恒定时,对流的宣乌特数为常数。36.4hdNu36.4ABmDdhSh 计入进口段对传质的影响,采用以下公式进行修正Sh不同条件下的平均或局部宣乌特数;浓度边界层已分发展后的宣乌特数;SC流体的施密特数;d管内径;x传质段长度;进口

8、段K1、k2、n常数(P57表24)判断:流动进口段长度Le和传质进口段长度LD管内各物理量的定性温度和定性浓度采用流体的主体温度和主体浓度 下标l、2分别表示进、出口状态。见王厚华传热学P157Pr假定壁面浓度恒定2300流动充分,并假定壁面浓度恒定2m从壁面传质角度考虑AbACudG24AbAbAAdCudCuddGG2244同一现象的两种表示从断面流动考虑2.4 对流传质模型2.4.1 Nernst薄膜理论 (1)流体靠近物体表面流过时,存在着一层附壁的薄膜;(2)在薄膜的流体侧与具有浓度均匀的主流连续接触,膜内流体与主流不相混合和扰动,无过渡;(3)薄膜内浓度线性分布mA=hm(CAw

9、-CAf)扩散对流问题的关键:没有过渡层(简化模型)2.4.2渗透模型当流体流过表面时,有流体质点不断地穿透流体的附壁薄层向表面迁移流体质点在与表面接触之际则进行质量的传递,流体质点又回到主流核心中去。数学模型为:一维非稳态扩散传质传质系数为求解结果:tc:质点在界面上的暴露时间hm与D成1/2次方关系总结:(1)由薄膜理论确定的对流传质系数与扩散系数呈线性的1次方关系,即hmD;(2)按渗透理论则为1/2次方关系,即 实验表明,对于大多数的对流传质过程,传质系数与扩散系数的关系如下式:2.5动量、热量和质量传递类比分析(湍流传质问题与湍流换热是类似分析)2.5.1三种传递现象的类比(1)对象

10、:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。(2)方式:动量、热量和质量的传递,既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递。2.5.2 三传方程动量能量质量三传方程形式一致,而且可以转换成相同形式的无因次方程(前面的层流传热、传质类比求解过程已经证实)无量纲边界条件为:动量能量质量无量纲边界条件一致如果三个方程的扩散系数相等时(v=a=D),即无因次方程完全一样;边界条件又完全相同;则它们的解也应当是完全一致的,即边界层中的无因次速度、无因次温度分布和无因次浓度分布曲线完全重合;当 时,无因次速度分布和浓度

11、分布曲线相重合,或无因次速度边界层和浓度边界层厚度相等。当aD 时,无因次温度分布和浓度分布曲线相重合,或无因次温度边界层和浓度边界层厚度相等。表示速度分布和温度分布的相互关系,体现流动和传热之间的相互联系;表示速度分布和浓度分布的相互关系,体现流体的传质特性;表示温度分布和浓度分布的相互关系,体现传热和传质之间的联系。用Sh与Sc、Re等准则的关联式,来表达对流质交换系数与诸影响因素的关系Pr)(Re,fNu套用传热学中的相同模式,得到:在传热学中有:即两者具有相同的表达法则f相同法则,在层流中的相似解中得到证实,此处主要用于分析湍流情况的分析在给定 Re准则条件下,当流体的a=D即流体的

12、PrSc时基于热交换和质交换过程对应的定型准则数值相等Nu=Sh热质交换类比律水与空气热质交换就属于这种情况Pr)(Re,fNuLe=Sc/Pr=a/D刘伊斯准则Pr Sc?2.5.3动量交换与热交换的类比在质交换中的应用2.5.3.1 雷诺类比(全部处于湍流区,没有层流底层和过渡层)雷诺建立了流动与换热之间的关系具体推导过程参考:王厚华传热学P139Cf摩擦系数雷诺类比与换热推导过程相类似,推广到传质,得:动量传输与质量传输之间的雷诺类比1ScDRe2fCSh 当说明对流传质系数除了数学解、实验解外,还可以通过摩擦系数求解,多了一个求解的路径普朗特提出类比(考虑层流底层)卡门类比(考虑过渡层)契尔顿和柯尔本(大量实验结果总结)2.5.3.3热、质传输的类比的一般关系柯尔本王厚华传热学P139柯尔本Pr Sc?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|