1、第三章第三章 有理数的运算有理数的运算3.1 3.1 有理数的加法与减法有理数的加法与减法第第3 3课时课时 一、新课引入 北京某天的气温是3C3C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C).显然,这天的温差是3(3).想想看,温差到底是多少呢?即:3(3)=6123二、学习目标 掌握有理数的减法法则;熟练地进行有理数的减法运算;了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想。三、研读课文 认真阅读课本第21页至第22页的内容,完成下面练习,并体验知识点的形成过程。三、研读课文 因为:3-(-3)=6,3+(+3)=6所以:3-(-3)_3+(+3)因为:0-(
2、-3)=_,0+(+3)=_所以:0-(-3)_0+(+3)因为:(-1)-(-3)=_,(-1)+(+3)=_所以:(-1)-(-3)_(-1)+(+3)因为:(-5)-(-3)=_,(-5)+(+3)=_所以:(-5)-(-3)_(-5)+(+3)计算:9-8_9+(-8)计算:15-7_15+(-7)知识点一知识点一探究有理数的减法法则探究有理数的减法法则:=33=22-2-2=三、研读课文 知识点一知识点一有理数减法法则:减去一个数,等于 这个数的 这个法则可以用字母表示为:_.从上述结果我们可以发现:有理数的减法运算可以转化为加法运算加上相反数ab=a(-b)三、研读课文 1、例4
3、计算:(1)(-3)-(-5)=(-3)+_=_;(2)0-7=0+_=_;(3)()=7.2+_=_;(4)(-3)-5=(-3)+_=_.2、思考:一般地,较小的数减去较大的数,所得的差的符号是_(填“正号”或“负号”).知识点二知识点二有理数的减法运算有理数的减法运算负号52-7(-7)12(-5)-8三、研读课文 练一练练一练计算:(1)69 (2)(+4)(-7)(3)(-5)(-8)(4)0 (-5)(5)()5.9 (6)1.9()=-3=11=3=5=2.5 四、归纳小结 减去一个数,等于加上这个数的相反数1、有理数的减法法则:字母表示成:2、学习反思:ab=a(-b)五、强化
4、训练 1、下列说法正确的是()A、减去一个数等于加上这个数;B、减去一个数等于加上这个数的相反数;C、减去一个数等于加上这个数的倒数;D、减去一个数等于加上这个数的绝对值.2、下列说法,正确的是()A.减去一个负数,等于加上这个数的相反数.B.两个负数的差,一定是一个负数.减去一个数,仍得这个数.D.两个正数的差,一定是一个正数BA五、强化训练 3、填空:(1)(-4)-(-4)=_;(2)6+_=-20;(3)(18)24=_ (4)比2低8的温度是_;(5)比-3低6的温度是_。0(-26)-42-6-9 五、强化训练 4、计算:(1)(2)(-2)(+)(3)0(-)(4)(-)(-)(
5、5)(-16)(-10)(+1)211332432535211443=61=-232=-8 =43 =51Thank you!确定二次函数的表达式学习目标学习目标1、会利用待定系数法求二次函数的表达式;、会利用待定系数法求二次函数的表达式;(重点)(重点)2、能根据已知条件,设出相应的二次函数的、能根据已知条件,设出相应的二次函数的表达式的形式,较简便的求出二次函数表表达式的形式,较简便的求出二次函数表达式。(难点)达式。(难点)课前复习课前复习二次函数有哪几种表达式?二次函数有哪几种表达式?一般式:一般式:y=ax2+bx+c (a0)(a0)顶点式:顶点式:y=a(x-h)2+k (a0)
6、(a0)交点式:交点式:y=a(x-x1)(x-x2)(a0)(a0)例题选讲例题选讲解:解:所以,设所求的二次函数为所以,设所求的二次函数为y=a(xy=a(x1)1)2 2-6-6由条件得:由条件得:点点(2,3)(2,3)在抛物线上,在抛物线上,代入上式,得代入上式,得3=a3=a(2+12+1)2 2-6,-6,得得 a=1a=1所以,这个抛物线表达式为所以,这个抛物线表达式为 y=(xy=(x1)1)2 2-6-6即:即:y=xy=x2 2+2x+2x5 5例例 1 1例题例题封面封面因为二次函数图像的顶点坐标是因为二次函数图像的顶点坐标是(1 1,6 6),),已知抛物线的顶点为(
7、已知抛物线的顶点为(1 1,6 6),与轴交点为),与轴交点为(2 2,3 3)求抛物线的表达式?)求抛物线的表达式?例题选讲解:解:设所求的二次函数为设所求的二次函数为y=ax2+bx+c将将A、B、C三点坐标代入得:三点坐标代入得:a-b+c=616a+4b+c=69a+3b+c=2解得:解得:所以:这个二次函数表达式为:所以:这个二次函数表达式为:a=1,b=-3,c=2y=x2-3x+2已知点已知点A(1,6)、)、B(2,3)和)和C(2,7),),求经过这三点的二次函数表达式。求经过这三点的二次函数表达式。oxy例例 2例题例题封面封面例题选讲解:解:所以设所求的二次函数为所以设所
8、求的二次函数为y=a(xy=a(x1)(x1)(x1 1)由条件得:由条件得:已知抛物线与已知抛物线与X X轴交于轴交于A A(1 1,0 0),),B B(1,01,0)并经过点并经过点M M(0,10,1),求抛物线的表达式?),求抛物线的表达式?yox点点M(0,1)M(0,1)在抛物线上在抛物线上所以所以:a(0+1)(0-1)=1a(0+1)(0-1)=1得:得:a=-1a=-1故所求的抛物线表达式为故所求的抛物线表达式为 y=y=-(x(x1)(x-1)1)(x-1)即:即:y=y=x x2 2+1+1例题例题例例 3 3封面封面因为函数过因为函数过A A(1 1,0 0),),B
9、 B(1,01,0)两点两点:小组探究小组探究1、已知二次函数对称轴为、已知二次函数对称轴为x=2,且过(,且过(3,2)、)、(-1,10)两点,求二次函数的表达式。)两点,求二次函数的表达式。2、已知二次函数极值为、已知二次函数极值为2,且过(,且过(3,1)、)、(-1,1)两点,求二次函数的表达式。)两点,求二次函数的表达式。解:设解:设y=a(x-2)y=a(x-2)2 2-k-k解:设解:设y=a(x-h)y=a(x-h)2 2+2+2例题选讲例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m
10、现把它的图形放在坐标系里现把它的图形放在坐标系里(如图所示如图所示),求抛物线的表达式,求抛物线的表达式 例例 4 4设抛物线的表达式为设抛物线的表达式为y=axy=ax2 2bxbxc c,解:解:根据题意可知根据题意可知抛物线经过抛物线经过(0(0,0)0),(20(20,16)16)和和(40(40,0)0)三点三点 可得方程组可得方程组 通过利用给定的条件通过利用给定的条件列出列出a a、b b、c c的三元的三元一次方程组,求出一次方程组,求出a a、b b、c c的值,从而确定的值,从而确定函数的解析式函数的解析式过程较繁杂,过程较繁杂,评价评价封面封面练习练习例题选讲例题选讲有一
11、个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里(如图所示如图所示),求抛物线的表达式,求抛物线的表达式 例例 4设抛物线为设抛物线为y=a(x-20)216 解:解:根据题意可知根据题意可知 点点(0,0)在抛物线上,在抛物线上,通过利用条件中的顶通过利用条件中的顶点和过原点选用顶点点和过原点选用顶点式求解,方法比较灵式求解,方法比较灵活活 评价评价 所求抛物线表达式为所求抛物线表达式为 封面封面练习练习用待定系数法求函数表达式的一般步骤用待定系数法求函数表达式的一
12、般步骤:1、设出适合的函数表达式;、设出适合的函数表达式;2 2、把已知条件代入函数表达式中,得到关于、把已知条件代入函数表达式中,得到关于待定系数的方程或方程组;待定系数的方程或方程组;3 3、解方程(组)求出待定系数的值;解方程(组)求出待定系数的值;4 4、写出一般表达式。写出一般表达式。课堂小结课堂小结求二次函数表达式的一般方法:求二次函数表达式的一般方法:已知图象上三点或三对的对应值,已知图象上三点或三对的对应值,通常选择一般式通常选择一般式已知图象的顶点坐标、对称轴或和最值已知图象的顶点坐标、对称轴或和最值 通常选择顶点式通常选择顶点式已知图象与已知图象与x轴的两个交点的横轴的两个交点的横x1、x2,通常选择交点式。通常选择交点式。yxo封面封面确定二次函数的表达式时,应该根据条件的特点,确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达式。恰当地选用一种函数表达式。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。