1、第第18章章二次根式二次根式复习复习(一)二次根式的定义、根号内字母的(一)二次根式的定义、根号内字母的取值范围以及二次根式的值取值范围以及二次根式的值.例1 判断下列各式哪些是二次根式?a6372x22ba 12 x1、二次根式的本质是数的算术平方根;、二次根式的本质是数的算术平方根;注意:注意:2、二次根式内字母的取值范围必须满足、二次根式内字母的取值范围必须满足 被开方数是非负数被开方数是非负数.例例2 求下列二次根式中字母的取值范围:求下列二次根式中字母的取值范围:x542x2xx222 xx1、2、3、4、例3 填空:2、若yxxxy则,6223、若二次根式 ,则x 22的值等于x1
2、、当x8时,的值等于x29(二)二次根式的性质(二)二次根式的性质.)0(12aaa:性质 aa:性质22)0(aa)0(aa)00(3babaab,:性质)00(4bababa,:性质例例4 化简下列各式:化简下列各式:;)6()1(2;)6)(2(2;)18()12()3(;85)4(;7531110845)5(;)23)(23()32)(6(2二次根式化简结果的要求:二次根式化简结果的要求:(1)根号内不含有开的尽方的因式;)根号内不含有开的尽方的因式;(2)根号内不含有分母)根号内不含有分母.);(2)7(22baabba).0()8(2aaa例例5 设设a、b、c为为ABC的三边,试
3、化简:的三边,试化简:2222)()()()(baccabcbacba=a+b+c+c+b-a+a+c-b-(b+a-c)=a+b+c+c+b-a+a+c-b-a-b+c=4c例例6 应满足什么条件?成立,则若xxxxx323323(三)二次根式的应用(三)二次根式的应用例例 如图,在如图,在RtABC中,中,CRt,BCa,AC1,延长,延长CB至点至点D,使,使BD=AB.(1)求)求AC与与DC的长度比;的长度比;(2)若)若a ,则,则 的值的值 是多少?是多少?3DCACABCD例例 如图,在长方形如图,在长方形ABCD中,中,CEBD,E为垂足,连接为垂足,连接AE,已知,已知AB
4、8,BC6,试求试求CED的面积的面积.ADBCE充分运用勾股定理已知a ,b ,求 的值 w【提示】先将二次根式化简,再代入求值 2141babbab【解】原式=当a ,b 时,原式 2)()()(babababbabbababbabbab221414121412191 多边形内角和1、什么叫正三角形?什么叫正方形?、什么叫正三角形?什么叫正方形?3、如果多边形的、如果多边形的各边都各边都相等相等,各内角也都相等各内角也都相等,那么,那么就称它为正多边形就称它为正多边形2、什么叫正多边形?、什么叫正多边形?归归纳:纳:问题:问题:三角形如果三条边都相等,三个角也都相等,那么这三角形如果三条边
5、都相等,三个角也都相等,那么这样的三角形就叫做样的三角形就叫做正正三角形三角形 如果多边形各如果多边形各边边都相等,各个都相等,各个角角也都相等,那么也都相等,那么这样的多边形就叫做这样的多边形就叫做正多边形正多边形 如正三角形、正四如正三角形、正四边形(正方形)、正五边形等等边形(正方形)、正五边形等等正三角形正三角形正四边形正四边形正五边形正五边形正六边形正六边形正八边形正八边形(或正三边形或正三边形)(或正四边形或正四边形)n边形外角和是多少度?边形外角和是多少度?探探 究究 发发 现现 外角和外角和=n个平角个平角-内角和内角和 结论:结论:n边形的外角和等于边形的外角和等于360=n
6、180-(n-2)180=360 1十边形的内角和为 度,正八边形的内角和为 度2多边形的边数增加1,内角和就增加 度;多边形的边数由7增加到10,内角和增加 度3已知一个多边形的内角和为1620,则它的边数为 4每个内角都是108的多边形是边形 144010801805401151803 180 360在四边形外部找一点,作该点与另四个顶点的连线由图知,四边形的内角和为:12怎样求怎样求n边形的内角和呢?边形的内角和呢?A1A2A3A4A5An从n边形的一个顶点出发,可以引 条对角线,它们将n边形分为 个三角形,n边形的内角和等于180 (n3)(n2)(n2)从五边形的一个顶点出发,从五边
7、形的一个顶点出发,可以引可以引 条对角线,它条对角线,它们将五边形分们将五边形分为为 个三个三角形,五边形的内角和等角形,五边形的内角和等于于180 从六边形的一个顶点出发,从六边形的一个顶点出发,可以引可以引 条对角线,它条对角线,它将六边形分为将六边形分为 个三角个三角形,六边形的内角和等于形,六边形的内角和等于180 解:六边形的外角和=总和六边形的内角和 =6180(62)180 =2180 =360 想一想:n 边形的外角和是多少度呢?(n 的值是不小于3的任意正整数)n边形的外角和=n 180(n2)180 =2180 =360 由此可得:多边形的外角和都等于360(与边数无关)动动脑筋?动动脑筋?智慧小屋有一张长方形的桌面,它的四个内角和为360,现在锯掉它的一个角,剩下残余桌面所有的内角和是多少?有几种情况?已知ABC中,A40,剪去A后成四边形,则1+2_ABCDE12练习练习解:A+B+C=_()A=40()B+C=_又B+C+1+2=_ 1+2_180三角形的内角和等于180已知140360220