1、2023-6-29 中考数学一轮复习 第一讲 几何最值问题解题策略 2023-6-29第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的频率。主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.近五年的中考真题,以安徽省为例,在2016、2017、2019年中出现了3次,考频比较高。但是考生得分率普遍不高,在复习时应引起关注,预计2020年全国中考会出现几何最值问题的选择题或解答题.2023-
2、6-29一一第二部分第二部分几何最值问题解题策略几何最值问题解题策略考情分析考情分析专题归纳专题归纳真题回顾真题回顾小试牛刀小试牛刀一、几何法一、几何法通过转化思想,将线段等值变换通过转化思想,将线段等值变换(常用方法:翻折(对称)、平移、旋转)(常用方法:翻折(对称)、平移、旋转)定点到定点定点到定点:两点之间,线段最短;:两点之间,线段最短;定点到定线定点到定线:点线之间,垂线段最短。:点线之间,垂线段最短。由此派生:由此派生:定点到定点定点到定点:三角形两边之和大于第三边;:三角形两边之和大于第三边;定线到定线定线到定线:平行线之间,垂线段最短;:平行线之间,垂线段最短;2023-6-2
3、9一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀【解析】【解析】本题考查直角坐标系中垂线段最短的问题本题考查直角坐标系中垂线段最短的问题.当当PMAB时时,PM最小最小,由此可由此可得得,BPM+PBA=PBA+OAB=90,BPM=OAB.对对于直线于直线y=2023-6-29第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀1、【翻折变换类】典型问题:“将军饮马”秘籍12、【平移变换类】典型问题:“造桥选址”2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛
4、刀例例1 1(20192019安徽)如图安徽)如图,在正方形在正方形ABCDABCD中中,点点E,FE,F将对角线将对角线ACAC三等分三等分,且且AC=12,AC=12,点点P P在正方形的边上在正方形的边上,则满足则满足PE+PF=9PE+PF=9的点的点P P的个数是的个数是()()A.0 B.4 C.6 D.8A.0 B.4 C.6 D.8注意转化到我们的最小值问题上,能否找到PE+PF的最小值,这个最小值和题目要求的9又存在什么关系?2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀(20192019铜陵)如图铜陵)如图,在菱形在菱形ABCDABCD中中
5、,DAB=60,DAB=60 ,点,点E E,F F将对角线将对角线ACAC三等分,且三等分,且AC=6AC=6,连接,连接DEDE,DFDF,BEBE,BF.BF.(3)(3)若若P P是菱形是菱形ABCDABCD的边上的点的边上的点,则满足则满足PE+PF=PE+PF=的点的点P P的个数是的个数是_个个132023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29常考直角三角形中求最值问题2
6、、纯几何图,通过将图形中的线段关系转化成代数或者函数问题解决最值问题近五年来的最值问题很多,有的题型甚至多个知识点的联用,“隐圆”问题综合性强(常常会牵扯到三角形、四边形),隐蔽2、纯几何图,通过将图形中的线段关系转化成代数或者函数问题解决最值问题“隐圆”问题综合性强(常常会牵扯到三角形、四边形),隐蔽列关于X的函数关系式,利用关系式及X的取值范围求最值(线段最值问题基本可以卡在圆的图形内考查,在这我们不做重复介绍)本节主要将常见的最值问题进行了系统的归纳总结,但实际上,如图,在矩形ABCD中,E是AB边的中点,F在AD边上,M,N分别是CD,1、在二次函数图形内的最值BC边上的动点,若AB=
7、AF=2,AD=3,则四边形EFMN周长的最小值是()(线段最值问题基本可以卡在圆的图形内考查,在这我们不做重复介绍)边AC上,并且CF=2,点E为边BC上的动点,将CEF沿直线EF翻折,点C 落如图,AB是O的一条弦,点C是O上一动点,且ACB=30,点E.应用一元二次方程根的判别式求最值2、纯几何图,通过将图形中的线段关系转化成代数或者函数问题解决最值问题一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀模型三:模型三:2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀
8、(20172017泰安)泰安)如图如图,正方形正方形ABCDABCD的面积为的面积为16,16,ABEABE是等边三角形是等边三角形,点点E E在正方形在正方形ABCDABCD内内,在对角线在对角线ACAC上有一点上有一点P P,使使PD+PEPD+PE的和最小的和最小,则这个最则这个最小值为小值为 (C C )【解析】设BE与AC交于点P,连接BD,PD.点B与D关于AC对称,PD=PB,PD+PE=PB+PE=BE,当点P位于点P处时,PD+PE最小.正方形ABCD的面积为16,AB=4,又ABE是等边三角形,BE=AB=4,PD+PE的最小值为4.2023-6-29一第二部分几何最值问题
9、解题策略考情分析专题归纳真题回顾小试牛刀模型三模型三:2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀模型四:模型四:2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀如图如图,在矩形在矩形ABCDABCD中中,E,E是是ABAB边的中点边的中点,F,F在在ADAD边上边上,M,N,M,N分别是分别是CD,CD,BCBC边上的动点边上的动点,若若AB=AF=2,AD=3,AB=AF=2,AD=3,则四边形则四边形EFMNEFMN周长的最小值是周长的最小值
10、是()()2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例6 62023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀5.(2016武汉)如图,AOB=30,点M,N分别在边OA,OB上,且OM=1,ON=3,点P,Q分别在边OB,OA上,则MP+PQ+QN的最小值是 .【解析】如图,作点M关于ON的对称点M,点N关于OA的对称点N,连接MN分别交ON,OA于点P,Q,此时MP+PQ+QN的值最小.由对称性质知,MP=MP,NQ=NQ,MP+PQ+QN=MN.连接ON,OM,则MOP=MOP=NOQ=30,NOM=90,又ON=ON
11、=3,OM=OM=1,MN=2023-6-29第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀3、【旋转变换类】OA与OB共用顶点O,固定OA将OB绕点旋转过程中的,会出现的最大值与最小值,如图:秘籍2:2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀 例例7 7 如图所示,如图所示,是等边三角形,在是等边三角形,在 中中 ,问:当问:当 为何值时,为何值时,C C、D D两点的距离最大?最大值两点的距离最大?最大值是多少?是多少?ABDABCBCaCAbACB D C B A2023-6-29,第二部分几何最值问题解题策略考情分析专题归纳真题回顾小
12、试牛刀秘籍3:旋转最值模型:(1 1)单轨迹圆模型单轨迹圆模型:如图,点:如图,点B B在圆在圆E E上,上,求求BDBD的最值。的最值。(2 2)双轨迹圆模型双轨迹圆模型:如图,点:如图,点D D在圆在圆A A上运动,上运动,点点P P在以在以BCBC为直径的圆上运动,求为直径的圆上运动,求PBPB的最值。的最值。2023-6-29,第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀圆中最值:(线段最值问题基本可以卡在圆的图形内考查,在这我们不做重复介绍)1、过圆内一点的所有弦中,直径最长,垂直于直径的弦最短2、“隐圆”中的最值问题“隐圆”问题综合性强(常常会牵扯到三角形、四边形)
13、,隐蔽性强,计算量大,近年来在全国各地的中考经常会出现(2014、2015、2016连续三年陕西中考,2016年安徽中考的压轴题的最后一问都牵扯到了隐圆)此类题目出现的位置一般是在填空的最后一题或是压轴题,基本都是难题。”隐圆“问题将作为第二讲内容单独呈现,敬请期待!秘籍4:2023-6-29如图,AB是O的一条弦,点C是O上一动点,且ACB=30,点E.F分别是AC、BC的中点,直线EF与O交于G、H两点。若O的半径为5,则GE+FH的最大值为_.第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例1.1.如图如图,AB,AB是是O O的一条弦的一条弦,点点C C是是O O上一动
14、点上一动点,且且ACB=30ACB=30 ,点,点E.FE.F分别是分别是ACAC、BCBC的中点,直线的中点,直线EFEF与与O O交于交于G G、H H两点。若两点。若O O的半径为的半径为5 5,则则GE+FHGE+FH的最大值为的最大值为_._.2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例2.2.(2016(2016江苏淮安江苏淮安)如图如图,在在RtRtABCABC中中,C=C=9090,AC=AC=6,6,BC=BC=8,8,点点F F在在边边ACAC上上,并且并且CF=CF=2,2,点点E E为边为边BCBC上的动点上的动点,将将CEFCE
15、F沿直线沿直线EFEF翻折翻折,点点C C 落落在点在点P P处处,则点则点P P 到边到边AB AB 距离的最小值是距离的最小值是.2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀【解析】本题考查与三角形有关的折叠的计算.由于FP的长度是不变的,于是P点在以点F为圆心,以2为半径的圆上运动,由此可确定点P在什么位置时到边AB的距离最小.如图,当点E在BC上运动时,PF的长固定不变,即PF=CF=2.点P在以点F为圆心,以2为半径的圆上运动.过点F作FHAB交F于P,垂足为H,此时PH最短,此时AFHABC,2023-6-29一第二部分几何最值问题解题策略考情分
16、析专题归纳真题回顾小试牛刀(2019通辽)如图,在边长为3的菱形ABCD中,A=60,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将AMN沿MN所在直线翻折得到AMN,连接AC则AC长度的最小值是 312023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例4 4(20162016安徽)如图,安徽)如图,RtRtABCABC中,中,ABBCABBC,AB=6AB=6,BC=4BC=4,P P是是ABCABC内部的一个动点,且满足内部的一个动点,且满足PAB=PBCPAB=PBC,则线段,则线段CPCP长的最小长的最小值为()值为()2023-6-29一第
17、二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀(20172017威海)如图,威海)如图,ABCABC为等边三角形,为等边三角形,AB=2.AB=2.若若P P为为ABCABC内一动点,内一动点,且满足且满足PAB=ACPPAB=ACP,则线段,则线段PBPB长度的最小值为长度的最小值为_._.2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例3 3(2015安徽)安徽)在在O中中,直径直径AB=6,BC是弦是弦,ABC=30,点点P在在BC上上,点点Q在在O上上,且且OPPQ.(2)如图如图2,当点当点P在在BC上移动时上移动时,求求PQ长的最大值
18、长的最大值.【解析】本题考查解直角三角形与勾股定理等知识.(1)连接OQ,在RtOPB中求出OP的长,在RtOPQ中求出PQ的长即可;(2)由勾股定理可知PQ2=OQ2-OP2,OQ的长为定值,则OP最小时,PQ最大,此时OPBC,即可求解.2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法1、在二次函数图形内的最值(1)理论基础列关于X的函数关系式,利用关系式及X的取值范围求最值如二次函数中斜三角形面积的最大值求法方法一:如图1,利用S=ah(a为水平距离,h为铅垂高)列出函数关系式,根据函数的性质求出最大值 212023-6-2
19、9一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法1、在二次函数图形内的最值(1)理论基础应用一元二次方程根的判别式求最值如二次函数中斜三角形面积的最大值求法方法二:如图,可转化为求在第一象限内抛物线上的点到直线AB距离的最大值根据直线与抛物线只有1个交点,通过根的判别式来求出最大值 2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法1、在二次函数图形内的最值(2)考法线段的最值如图,在第一象限内抛物线上有一动点P,过点P作PDx轴交AB于点D,当PD(或PH)最大时,求点P的坐标。20
20、23-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法1、在二次函数图形内的最值(2)考法面积的最值.如图,在第一象限内,抛物线上有一动点P,当三角形ABP面积最大时,求点P的坐标 2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法1、在二次函数图形内的最值(2)考法周长的最值如图,矩形ABCD的边AB在x轴上,顶点C,D在抛物线上,当矩形ABCD的周长最大时,求点A的坐析 2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀(2018大庆)如图,抛物
21、线 与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4)(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;452xxy2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀(2018遂宁)已知抛物线 的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(2)如图1,若点P是抛物线上B.C两点之间的一个动点(不与B.C重合),是否存在点P,使三角形PBC的面积最大?若存在,写出面积的最大值;若不存在,请说明理由;42341-2xxy2023-6-29一第二部分几何最
22、值问题解题策略考情分析专题归纳真题回顾小试牛刀二、代数、函数法二、代数、函数法2、纯几何图,通过将图形中的线段关系转化成代数或者函数问题解决最值问题 常考直角三角形中求最值问题常考直角三角形中求最值问题(1 1)根据)根据勾股定理勾股定理求各边长求各边长(2 2)利用三角函数求各边长)利用三角函数求各边长(3 3)直角三角形中斜边的中线是斜边的一半()直角三角形中斜边的中线是斜边的一半(中线长定理中线长定理)(4 4)利用)利用中位线中位线定理求值定理求值(5 5)含)含 角的直角三角形中,角的直角三角形中,角所对的直角边等于斜角所对的直角边等于斜边的一半边的一半30302023-6-29一第
23、二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例1(2016合肥)如图,矩形ABCD,点E、F、G分别是边AD AB BC 上的动点,且四边形EFGH是正方形,若AB=6,BC=10,则正方形EFGH的面积最小值2023-6-29一一第二部分第二部分几何最值问题解题策略几何最值问题解题策略考情分析考情分析专题归纳专题归纳真题回顾真题回顾小试牛刀小试牛刀如图,正方形如图,正方形ABCDABCD面积面积6060,EFGHEFGH四点分别在各边上,且围城的四边形四点分别在各边上,且围城的四边形为正方形,则为正方形,则EFGHEFGH面积的最小值面积的最小值A AB BC CD DE EF
24、 FG GH H2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例2 22023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀如图,直线l与半径为4的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是2.【解析】如图,作直径AC,连接CP,则CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,2023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀例例3 32023-6-29一第二部分几何最值问题解题策略考情分析专题归纳真题回顾小试牛刀2023-6-29下节预告:“隐圆”你别跑!口诀:遇到最值大坏蛋,直线跑,对称跳,(捶)垂了不管用,隐圆先生常帮你,函数姐姐把你救。本节主要将常见的最值问题进行了系统的归纳总结,但实际上,近五年来的最值问题很多,有的题型甚至多个知识点的联用,在遇到最值问题时几何方法难以解决的情况,不要忘记代数、函数法在一轮复习中,我们还会把三角形中的最值、四边形中的最值、圆中的最值以及二次函数线段最值问题给大家进行统练习并替总结归纳。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。