1、 1 太原市 2016 2017 学年第一学期高一年级期末考试 数学试卷 一、选择题:本大题共 12 小题,每小题 3 分,共 36 分 . 1.下列语句可以是赋值语句的是 A. 1Sa? B. 1aS? C. 1Sa? D. 1Sa? 2.一个人打把时连续射击两次,事件“至少有一次中靶”的互斥事件是 A. 至多又一次中靶 B. 两次都不中靶 C. 只有一次中靶 D.两次都中靶 3.右图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 A. 65 B. 64 C. 63 D. 62 4.下列事件:抛一枚硬币,出现正面朝上;某人买彩票中奖;大年初一太原下
2、雪;标准大气压下,水加热到 90C 时会沸腾 .其中随机事件的个数是 A.1 B. 2 C. 3 D.4 5.太原 市某时段 100 辆汽车通过祥云桥时,时速的频率分布直方图如图所示,则时速在 ? ?30,40 的汽车约有 A. 30 辆 B. 35 辆 C. 40 辆 D. 50 辆 6.从 1,2,3,4,5 共 5 个数字中 任取一个数字,取出的数字为奇数的概率为 A.12 B. 15 C. 25 D.35 7.为了在运行右面的程序之后输出的值为 5,则 输入 x 的所有可能的值是 A. 5 B. -5 C. 5 或 0 D.-5 或 5 8.线性回归方程 ? ?y bx a?表示的直线
3、必经过的一个定点是 A. ? ?,xy B. ? ?,0x C. ? ?0,y D. ? ?0,0 9.把 89 化成二进制数使 A. 100100 B. 10010 C. 10100 D.1011001 10.阅读如图所示的程序框图,运行相应的程序,输出的结果是 2 A.1 B. 4 C. 9 D.16 11.函数 ? ? ? ?2 2 5 5f x x x x? ? ? ? ? ?,在其定义域内任取一点 0x ,使 ? ?0 0fx? 的概率是 A. 110 B. 23 C. 310 D.45 12.若函数 ?fx的零点与 ? ? 4 2 2xg x x? ? ?的零点之差的绝对值不超过
4、0.25,则 ?fx可以是 A. ? ? 41f x x? B. ? ? ? ?21f x x? C. ? ? 1xf x e? D. ? ? 1ln2f x x?二、填空题:本大题共 4 小题,每小题 4 分,共 16 分 . 13. 某校 高一、高二、高三年级学生共 700 人,其中高一年级 300人,高二年级 200 人,高三年级 200 人,现采用 分层抽样的方法抽取一个容量为 35 的样本,那么从高一年级抽取的人数应为 人 . 14.用“辗转相除法”求得 119 和 153 的最大公约数是 . 15.若连续抛掷一枚骰子两次,第一次得到的点数为 m ,第二次得到的点数为 n ,则点 ?
5、 ?,Pmn落在以坐标原点为圆心, 4 为半径的圆内的概率为 . 16.已知函数 ? ? ,01, 0xaxfxkx x? ? ? ?,且 0 1, 0ak? ? ? ,若函数 ? ? ? ?g x f x k?有两个零点,则实数 k 的取 值范围为 . 三、解答题:本大题共 4 小 题,共 44 分 .解答应写出必要的文字说明或推理、验算过程 . 17.(本题满分 10 分) 某同学收集了班里 9 名男生 50m跑的测试成绩(单位: s): 6.4、 7.5、 8.0、 6.8、 9.1、 8.3、 6.9、 8.4、 9.5,并设计了一个算法可以从这些数据中 搜索出小于 8.0 的数据,算
6、法步骤如下: 第一步: 1i? 第二步:输入 一个数据 a 第三步:如果 8.0a? ,则输出 a ,否则执行第四步 第四步: 1ii? 第五步:如果 9i? ,则结束算法,否则执行第二步 请你根据上述算法将下列程序框图补充完 整 . 18.一个包装箱内有 6 件产品,其中 4 件正品, 2 件次品,现随机抽出两件产品 ( 1)求恰好有一件次品的概率; ( 2)求抽到次品的概率 . 3 19.(本题满分 10 分) 有关部门为了了解雾霾知识在学校的普及情况,印制了若干份满分为 10 分的问卷到各学校做调查。某中学 A,B 两个班各被随机抽取 5 名学生进行问卷调查,得分如下: ( 1)请计算
7、A,B 两个班的平均分,并估计哪个班的问卷得分要稳定一些; ( 2)如果把 B 班 5 名学生的得分看成一个总体,并用简单随机抽样从中抽取样本容量为 2的样本,求样 本的平均数与总体平均数之差的绝对值不小于 1 的概率 . 20.(本题满分 10 分)请同学们在( A)、( B)两个小题中任选一题作答 ( A)某超市选取了 5 个月的销售额和利润额,资料如下表: ( 1)求利润额 y 对销售额 x 的回归直线方程; ( 2)当销售额为 4(千万元)时,估计利润额的大小 ( B)在一次对昼夜温差大小与种子发芽数之间的研究中,研究人员获得了一组样本数据: ( 1) 请根据上述数据,选取其中的 前
8、3 组数据,求出 y 关于 x 的线性回归方程; 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过 2 颗,则认为得到的线性回归直线方程是可靠的,请问( 1)中所得的线性回归方程是否可靠? 21.(本题满分 10 分)请同学们在( A)、( B)两个小题中任选一题作答 ( A)在经济学中,函数 ?fx的边际函数 ? ?Mf x 定义为 ? ? ? ? ? ?1M f x f x f x? ? ?。某公4 司每月最多生产 100 台报警系统装置,生产台 x ? ?xN? 的收入函数为 ? ? 23 0 0 0 2 0R x x x?(单位:元),其成本函数为 ? ? 500 400
9、0C x x?(单位:元),利润是收入与成本之差 . ( 1)求利润函数 ?Px与边际利润函数 ? ?MPx ; ( 2) ( 2)利润函数 ?Px与边际利润函数 ? ?MPx 是否具有相同的最大值? ( B)某地西红柿从 2 月 1 日起开始上市 ,通过市场调查,得到西红柿种植成本 Q (单位:元/10kg)与上市时间 t (单位:元)的数据如下表: ( 1)根据上表数据判断,函数 2, , , l o gt bQ a t b Q a t b t c Q a b Q a t? ? ? ? ? ? ? ? ?中哪一个适宜作为描述西红柿种植成本 Q 与上市时间 t 的变化关系?简要说明理由; ( 2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本 . 太原市 2016 2017 学年第一学期高一年级期末考试 数学试卷参考答案 一、选择题: 1-5 ABBCA 6-10 DDADC 11, 12 CA 二、填空题: 13.15, 14.17, 15.23 , 16.? ?0,1 三、解答题: 17. 5 18. 1 9. 6 20. 21. 7 8
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。