ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:313.60KB ,
文档编号:677303      下载积分:1.45 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-677303.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(证明三角形全等的常见题型教案(新人教版八年级上册数学).pdf)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

证明三角形全等的常见题型教案(新人教版八年级上册数学).pdf

1、证明三角形全等的常见题型证明三角形全等的常见题型 全等三角形是初中几何的重要内容之一, 全等三角形的学习是几何入门最关 键的一步,这部分内容学习的好坏直接影响着今后的学习。而一些初学的同学, 虽然学习了几种判定三角形全等的公理和推论, 但往往仍不知如何根据已知条件 证明两个三角形全等。在辅导时可以抓住以下几种证明三角形全等的常见题型, 进行分析。 一、已知一边与其一邻角对应相等一、已知一边与其一邻角对应相等 1证已知角的另一边对应相等,再用 SAS 证全等。 例例 1 已知:如图 1,点 E、F 在 BC 上,BE=CF,AB=DC,B=C .求证: AF=DE。 证明证明 BE=CF(已知)

2、,BE+ EF=CF+EF,即 BF=CE。 在ABF 和DCE 中, ABFDCE(SAS)。 AF=DE(全等三角形对应边相等)。 2证已知边的另一邻角对应相等,再用 ASA 证全等。 例例2 已知 : 如图2, D是ABC的边AB上一点, DF交AC于点E, DE=FE, FCAB。 求证:AE=CE。 证明证明 FCAB(已知),ADE=CFE(两直线平行,内错角相等)。 在ADE 和CFE 中, ADECFE(ASA). AE=CE(全等三角形对应边相等) 3证已知边的对角对应相等,再用 AAS 证全等。 例例 3 (同例 2). 证明证明 FCAB(已知), A=ECF(两直线平行

3、,内错角相等). 在ADE 和CFE 中, ADECFE(AAS). AE=CE(全等三角形对应边相等)。 二、已知两边对应相等二、已知两边对应相等 1证两已知边的夹角对应相等,再用 SAS 证等。 例例 4 已知:如图 3,AD=AE,点 D、E 在 BCBD=CE,1=2。求证: ABDACE. 证明证明 1=2(已知), ADB=180-1, AEC=180-2(邻补角定义), ADB = AEC, 在ABD 和ACE 中, ABDACE(SAS). 2证第三边对应相等,再用 SSS 证全等。 例例 5 已知:如图 4,点 A、C、B、D 在同一直线 AC=BD,AM=CN, BM=DN

4、。 求证: AMCN,BMDN。 证明 AC=BD(已知) AC+BC+BC, 即 AB=CD. 在ABM 和CDN 中, ABMCDN(SSS) A=NCD,ABM=D(全等三角应角相等), AMCN,BMDN(同位角相等,两直行)。 三、已知两角对应相等三、已知两角对应相等 1证两已知角的夹边对应相等,再用 ASA 证全等。 例例 6 已知:如图 5,点 B、F、C、E 在同一条直线上,FB=CE,B=E, ACB=DFE.求证: AB=DE, AC=DF. 证明证明 FB=CE(已知) FB+FC=CE+FC, 即 BC=EF, ABCDEF(ASA). AB=DE,AC=DF(全等三角

5、形对应边相等) 2证一已知角的对边对应相等,再用 AAS 证全等。 例例 7 已知:如图 6,AB、CD 交于点 O,E、F 为 AB 上两点,OA=OB, OE=OF,A=B,ACE=BDF. 求证:ACEBDF. 证明证明 OA=OB,OE=OF 已知),OA-OE=OB-OF,即 AE=BF, 在ACE 和BDF 中, ACEBDF(AAS). 四四、已知一边与其对角对应相等已知一边与其对角对应相等,则可证另一角对应相等则可证另一角对应相等,再利用再利用 AAS 证全等证全等 例例 8 已知 : 如图 7, 在ABC 中, B、 D、 E、 C 在一条直线上, AD=AE, B=C 证:ABDACE. 证明证明AD=AE(已知) 1=2(等边对等角), ADB=180-1, AEC=180-2(邻补角定义), ADB=AEC, 在ABD 和ACE 中, ABDACE(AAS).

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|