ImageVerifierCode 换一换
格式:PPTX , 页数:26 ,大小:817.18KB ,
文档编号:6872789      下载积分:2 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-6872789.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(副主任)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(新人教A版高中数学选择性必修三《7.3.1离散型随机变量的均值》教学课件.pptx)为本站会员(副主任)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

新人教A版高中数学选择性必修三《7.3.1离散型随机变量的均值》教学课件.pptx

1、高二数学选择性必修第三册第七章随机变量及其分布离散型随机变量的分布列离散型随机变量的分布列1.概率分布列(分布列)概率分布列(分布列)注意:列出随机变量的所有可能取值;求出随机变量的每一个值发生的概率.3.3.求随机变量求随机变量X X分布列的步骤如下分布列的步骤如下:复习巩固复习巩固 1 概率之和概率之和 2.2.离散型随机变量分布列的性质:离散型随机变量分布列的性质:(1)确定取值:根据随机变量X的意义,写出X全部可能的取值;(2)求 概 率:求出X取每个值的概率;(3)写分布列:写出X的分布列(有时也可省略)离散型随机变量的分布列全面地刻画了这个随机变量的取值规律.但在解决有些实际问题时

2、,直接使用分布列并不方便.例如,要比较不同班级某次考试成绩,通常会比较平均成绩;要比较两名射箭运动员的射箭水平,一般会比较他们射箭的成绩(平均环数或总环数)以及稳定性.因此,类似于研究一组数据的均值和方差一组数据的均值和方差,我们也可以研究离离散型随机变量的均值和方差散型随机变量的均值和方差,它们统称为随机变量的数字特征.问题导学 问题1:甲乙两名射箭运动员进行射击比赛,成绩如下(单位:环):甲78910乙68910甲、乙两人谁的射箭水平更高呢?问题2:甲、乙两名射箭运动员进行了100次射击,成绩如下(单位:环):环数X78910甲射中的频率 0.31 0.25 0.08 0.36乙射中的频率

3、 0.27 0.29 0.10 0.34甲、乙两人谁的射箭水平更高呢?问题探究问题3:甲乙两名射箭运动员以往的射击比赛,分布列如下表所示:环数X78910甲射中的概率 0.31 0.25 0.08 0.36乙射中的概率 0.27 0.29 0.10 0.34甲、乙两人谁的射箭水平更高呢?问题1:甲78910乙68910问题2:环数X78910甲射中的频率 0.31 0.25 0.08 0.36乙射中的频率 0.27 0.29 0.10 0.34问题探究算术平均值样本均值问题1:甲78910乙68910问题2:环数X78910甲射中的频率 0.31 0.25 0.08 0.36乙射中的频率 0.

4、27 0.29 0.10 0.34问题探究问题3:环数X78910甲射中的概率 0.31 0.25 0.08 0.36乙射中的概率 0.27 0.29 0.10 0.34一般地,若离散型随机变量X的分布列为 Xx1x2xixnPp1p2pipn为随机变量为随机变量X的的均值均值或或数学期望数学期望,数学期望简称数学期望简称期望期望.它反映了离散型随机变量的它反映了离散型随机变量的平均水平平均水平.期望的计算是从概率分布出发,因而它是概率意义下的平均值.对于确定的随机现象,随机变量的均值是确定的常数,不依赖于样本的抽取.而样本均值是一个随机的数值,它随着样本抽取的不同而变化.因此我们也可以得出随

5、机变量的均值与样本均值的区别与联系:离散型随机变量的均值说明区别:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本的不同而变化;联系:对于简单随机样本,随着样本容量的增加样本的平均值越来越接近于总体的均值.因此我们常用样本的平均值估计总体的均值.概念解析例1:在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X的均值是多少?X=1或X=0P(X=1)=0.8X X0 01 1P P0.0.2 20.0.8 8变式1:如果将题目中概率0.8改成p,那么他罚球1次得分X的均值是多少呢?所以 E(X)=0P(X

6、=0)+1P(X=1)=00.2+10.8=0.8即他罚球1次的得分X的均值是0.8.解:因为P(X=1)=0.8,P(X=0)=0.2,典例解析一般地,如果随机变量X服从两点分布,那么E(X)=?若X服从两点分布,则E(X)=p.X X0 01 1P P1 1 p pp p例题推广 在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.8,那么他罚球2次的得分X的均值是多少?所以他罚球所以他罚球2次次的得分的得分X的均值是的均值是1.6.变式2X012P0.04 0.32 0.64即X的分布列如右图所示:(1)确定取值:根据随机变量X的意义,写出X全部可能的取值;(2

7、)求概率:求出X取每个值的概率;(3)写分布列:写出X的分布列(有时也可省略);(4)求均值:由均值的定义公式求出E(X).求离散型随机变量的均值的步骤方法归纳 例2:抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.学以致用变式1:将所得点数的2倍加1作为得分分数Y,即Y=2X+1,求Y的数学期望.P13119753Y则 P(Y)=P(aX+b)=P(X=xi)=pi,i=1,2,3,pn p2 p1 P axn+b ax2+b ax1+b Y(2)E(Y)=(ax1+b)p1+(ax2+b)p2+(axn+b)pn若Y=aX+b,其中a,b为常数,X为随机变量;(1)写出随机变量Y的分

8、布列;(2)求Y的均值。解:(1)由题意,知Y也为随机变量,所以,Y的分布列为:=a(x1p1+x2p2+xnpn)+b(p1+p2+pn)=aE(X)+b即 E(aX+b)=aE(X)+b问题探究离散型随机变量的均值的性质若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b.特别地:当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.当b=0时,E(aX)=aE(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.总结提升离散型随机变量均值离散型随机变量均值的运算性质的运算性质(1)E(Xb)E(X)b,(2)E(a

9、X)aE(X),(3)E(aXb)aE(X)b.X-101P0.5 0.25m歌曲歌曲ABC猜对的概率0.80.60.4获得的公益基金/元100020003000典例解析歌曲歌曲ABC猜对的概率0.80.60.4获得的公益基金/元100020003000解:分别用解:分别用A,B,CA,B,C表示猜对歌曲表示猜对歌曲A,B,CA,B,C歌名的事件,则歌名的事件,则A,B,CA,B,C相互独立相互独立.典例解析歌曲歌曲ABC猜对的概率0.80.60.4获得的公益基金/元100020003000X0100030006000P0.20.320.2880.192典例解析 如果改变猜歌的顺序,获得公益基

10、金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?解:分别用A,B,CA,B,C表示猜对歌曲A,B,CA,B,C歌名的事件,则A,B,CA,B,C相互独立.X0100030006000P0.20.480.1280.192思考对于例3,决策的原则是选择期望值大的猜歌顺序,这称为期望值原则.猜歌顺序猜歌顺序E(X)/元元猜歌顺序猜歌顺序E(X)/元元ABC2336BCA2112ACB2144CAB1904BAC2256CBA1872例4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪

11、水时要损失10000元。为保护设备,有以下三种方案:方案1:运走设备,搬运费为3800元。方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水。方案3:不采取措施,希望不发生洪水。工地的领导该如何决策呢?典例解析分析:决策目标为总损失(投入费用与设备损失之和)越小越好,根据题意,各种方案在不同状态下的总损失如表所示:天气状况天气状况大洪水小洪水没有洪水 概率0.010.250.74总损失/元方案1380038003800方案26200020002000方案360000100000方案2和方案3的总损失都是随机变量,可以采用期望总损失最小的方案。解:设方案1、方案2、方案3的总损失分别为

12、X1,X2,X3.采用方案1,无论有无洪水,都损失3800元.因此,P(X1=3800)=1.采用方案2,遇到大洪水时,总损失为2000+6000=62000元;没有大洪水时,总损失为2000元,因此,P(X2=62 000)=0.01,P(X2=2000)=0.99.采用方案3,P(X3=60 000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74.于是,E(X1)=3800,E(X2)=62 0000.01+2 0000.99=2 600,E(X3)=60 0000.01+10 0000.25+00.74=3 100.因此,从期望损失最小的角度,应采取方案2.值得注

13、意的是,上述结论是通过比较“期望总损失”而得出的,一般地,我们可以这样来理解“期望总损失”:如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小,不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.解题反思 例4也是利用期望值决策的问题.随机变量的期望是一个理论上的均值,如果是大量重复地就同样的问题进行决策,期望值原则就是一个合理的决策原则.例如,保险公司面对众多的客户,每份保单需要理赔的期望值对制定合理的保险费率具有重要的参考意义.但如果是一次性决策的话,可以采用期望值原则决策,也可以采用其它的决策原则.一个定义一个定义 离散型随机变量均值的定义一 二个注意二个注意 样本平均值和随机变量均值的区别与联系二 三个性质三个性质(1)E(Xb)E(X)b,(2)E(aX)aE(X),(3)E(aXb)aE(X)b.三 四个步骤四个步骤 求离散型随机变量均值的四个步骤四提炼升华总结归纳

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|