ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:1.58MB ,
文档编号:694749      下载积分:2.49 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-694749.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(专题1.5 极值点偏移第三招-含对数式的极值点偏移问题高考数学解答题压轴题突破讲义(解析版).doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

专题1.5 极值点偏移第三招-含对数式的极值点偏移问题高考数学解答题压轴题突破讲义(解析版).doc

1、 前面我们已经指明并提炼出利用判定定理解决极值点偏移问题的策略:若 ( ) fx的极值点为 0 x,则根据对 称性构造一元差函数 ( )()()00 F xf xxf xx=+-,巧借 ( ) F x的单调性以及 ( ) 00F=,借助于 ( )()()120 02 fxfxfxxx 轾 =- 臌 与 ()002 fxxx 轾 +- 臌 ()02 2fxx=-,比较 2 x与 01 2xx-的大小,即 比较 0 x与 21 2 xx+ 的大小有了这种解题策略,我们师生就克服了解题的盲目性,细细咀嚼不得不为其绝妙 的想法喝彩。#网 本文将提炼出极值点偏移问题的又一解题策略:根据 ( )( )12

2、 f xf x=建立等式,通过消参、恒等变形 转化为对数平均,捆绑构造函数,利用对数平均不等式链求解 例. 已知函数 2 ( )ln(2) .f xxaxa x=-+- (1)讨论( )f x的单调性; (2)设0a,证明:当 1 0 x a -; (3)若函数( )yf x=的图象与x轴交于,A B两点,线段AB中点的横坐标为 0 x,证明: 0 ()0fx . 法二:构造以a为主元的函数,设函数 11 ( )()()h afxfx aa =+-, 则( )ln(1)ln(1)2h aaxaxax=+-, 32 22 2 ( )2 111 xxx a h ax axaxa x =+-= +-

3、 , 由 1 0 x a ,解得 1 0a x ,&网 当 1 0a x ,( )h a在(0,)+?上单调递增, 而(0)0h=, 所以( )0h a ,故当 1 0 x a -. 【问题的进一步探究】【问题的进一步探究】 对数平均不等式的介绍与证明对数平均不等式的介绍与证明 两个正数a和b的对数平均定义: (), ( , )lnln (). ab ab L a bab a ab - = - = 对数平均与算术平均、几何平均的大小关系: ( , ) 2 ab abL a b + (此式记为对数平均不等式对数平均不等式) 取等条件:当且仅当ab=时,等号成立. 只证:当ab时,( , ) 2

4、ab abL a b + . 证明如下: (I)先证:( , )abL a b来源:ZXXK 不等式 1 lnlnln2ln(1) abaaba abxxx bbaxbab - ?其中 构造函数 1 ( )2ln(),(1)f xxxx x =-,则 2 2 211 ( )1(1)fx xxx =-=-. 因为1x时,( )0fx ,所以函数( )f x在(1,)+?上单调递减, 故( )(1)0f xf=,从而不等式成立; (II)再证:( , ) 2 ab L a b + ?= + + 其中 构造函数 2(1) ( )ln,(1) (1) x g xxx x - =- + ,则 2 22

5、14(1) ( ) (1)(1) x g x xxx x - =-= + .来源:Z。X。X。K 因为1x时,( )0g x ,所以函数( )g x在(1,)+?上单调递增, 故( )(1)0g xg=,从而不等式成立;*网 综合(I) (II)知,对, a bR+?,都有对数平均不等式( , ) 2 ab abL a b + 成立,来源: 当且仅当ab=时,等号成立. 例题第(例题第(3)问另解:)问另解:由 12 ( )()0f xf x= 22 111222 ln(2)ln(2)0 xaxa xxaxa x?+-=-+-= 22 12121212 lnln2()()xxxxa xxxx?

6、+-=-+- 来源:163文库 1212 22 1212 lnln2()xxxx a xxxx -+- ? -+- 故要证 12 00 1 ()0 2 xx fxx a + 22 12121212 12 1212 12 1 lnln 2lnln2() 2 xxxxxxxx xx xxxx xx +-+-+ ?= - -+- + - 12 1212 lnln2xx xxxx - ? +- . 根据对数平均不等式,此不等式显然成立,故原不等式得证. 已知函数( )lnf xxx=与直线ym=交于 1122 ( ,), (,)A x yB xy两点. 求证: 12 2 1 0 x x e 由题于ym

7、=与lnyxx=交于不同两点,易得出则0m 上式简化为: 2 12 ln()2lnxxe-?-= 12 2 1 0 x x e . 【答案】 (1) 20172016 20162017(2)见解析&网 试题解析: (1)依题意得 ( ) () 2 ln xa x x fx xa + - + =, 所以 ( ) () 2 11 1 1 a fx a a + = + + ,又由切线方程可得 ( ) 11f=,即 1 1 1 a = + ,解得0a= 此时 ( ) lnx fx x =, ( ) 2 1 lnx fx x - =, 令 ( ) 0fx ,即1 ln0 x-,解得0 xe ; 令 (

8、) 0fx ,即1 ln0 x- 所以 ( ) fx的增区间为( ) 0,e,减区间为( ) , e +? 所以 ()() 20162017ff,即 ln2016ln2017 20162017 , 2017ln20162016ln2017, 20172016 20162017.来源: (2)证明:不妨设 12 0 xx因为 ( )( )12 0g xg x= 所以化简得 11 ln0 xkx-=, 22 ln0 xkx-= 可得 ()1212 lnlnxxk xx+=+, ()1212 lnlnxxk xx-=-. 要证明 2 12 x xe,即证明 12 lnln2xx+,也就是 ()12

9、2k xx+ 因为 12 12 lnlnxx k xx - = - ,所以即证 12 1212 lnln2xx xxxx - -+ &网 即 112 212 ln xxx xxx - + ,令 1 2 x t x =,则1t ,即证 () 21 ln 1 t t t - + . 令 ( ) () 21 ln 1 t h tt t - =- + (1t ) ,由 ( ) () () () 2 22 114 0 11 t h t t tt t - =-= + + 故函数 ( ) h t在( ) 1,+?是增函数,所以 ( )( ) 10h th=,即 () 21 ln 1 t t t - + 得证

10、. 所以 2 12 x xe.&网 点睛:本题主要考查函数导数与切线的关系,考查利用导数来证明不等式,考查利用分析法和导数来证明 不等式的方法.有关导数与切线的问题,关键的突破口在与切点和斜率,本题中已知切线和某条直线垂直, 也即是给出斜率,利用斜率可求得函数的参数值.利用导数证明不等式通常先利用分析法分析,通过转化后 再利用导数来证明. 已知函数 ( )() ln,. b fxxa a bR x =+-?来源: ()讨论函数 ( ) fx的单调区间与极值; ()若0b且 ( ) 0fx 恒成立,求 1 1 a eb - -+的最大值; ()在()的条件下,且 1 1 a eb - -+取得最

11、大值时,设 ( )() 1a F bm mR b - =-?,且函数 ( ) F x有两 个零点 12 ,x x,求实数m的取值范围,并证明: 2 12 .x xe 【答案】 ()答案见解析; ()当ln1ba= -时, 1 1 a eb - -+最大为 1; ()证明过程见解析 ()由()知,当 1 1 a eb - -+取最大值 1 时, ( )() 1 ln 1ln,0 a b ebabF bm b b - =?=?-,记 ( )() ln 0 x F xm x x =-, ( ) 0ln0F xxmx= ?=, 不 妨 设 12 xx,只需证明 ()1 2 ln2x x,只需证明 ()

12、12 2m xx+, 即证明 122 211 ln2 xxx xxx + - ,即证 2 12 2 1 1 1 ln2 1 x xx x x x + - ,设 2 1 1 x t x =,则只需证明 1 ln2 1 t t t - ? + ,也就是证明 1 ln20 1 t t t - -? + ,记 ( )() 1 ln2,1 1 t u ttt t - =-? + ,所以 ( ) () () () 2 22 114 0 11 t u t t tt t - =-= + + ,所以 ( ) u t在 () 1,+?单调递增,所以 ( )( ) 10u tu=,所以原不等式成立. 已知函数,其中

13、 (1)若,讨论的单调区间; (2)已知 函数的曲线与函数的曲线 有两个交点,设两个交点的横坐标分别为,证明: . 【答案】 ()见解析()见解析. 【解析】 ()由已知得, &网 当时, ; 当时, 故若,在上单调递增,在上单调递减; 故若,在上单调递减,在上单调递增 取,即只需证明成立即只需证成立 ,在区间上单调递增, 成立 故原命题得证 已知函数 ( ) ln ax fx x =. (1)若 ( ) fx在点 ( )() 22 ,ef e处的切线与直线40 xy+=垂直,求函数 ( ) fx的单调递增区间; (2)若方程 ( ) 1fx =有两个不相等的实数解 12 ,x x,证明: 1

14、2 2xxe+. 【答案】 ()( ) 0,1和( ) 1,e; ()见解析 ()由 () () 121222 121211 lnx lnxa xxlnxax lnxlnxa xxlnxax -=-= +=+= 12 12 lnlnxx a xx - = - 1212 2.xxx x+,只要证 2 1212 lnln2x xexx? 只需证 ()() 12 121212 12 lnln lnln2 xx xxa xxxx xx - +=+=+ - ,不妨设 12 xx 即证 ()12 11 2122 2 ln,1 xxxx t xxxx - = + 令,*网 只需证 () ( ) () 212

15、14 ln,lnln2 111 tt tg ttt ttt - =-=+- + , 则 ( ) g t在( ) 1 +?,上单调递增, ( )( ) 10(1)g tgt=,即证 【新题试炼】【新题试炼】来源来源:Z+X+X+K 【2019 四川自贡一诊】已知函数 (1)求的单调区间; (2)若有极值,对任意的,当,存在 使,证明:. 【答案】 (1)详见解析; (2)详见解析. (2)由(1)当时,存在极值. 由题设得 又, 设.则 . 令,则 所以在上是增函数,所以 又,所以, 来源:163文库 因此 即 又由知在上是减函数, 所以,即.网 【2018 广东江门调研】已知函数, 是常数且. (1)若曲线在处的切线经过点,求 的值; (2)若( 是自然对数的底数) ,试证明:函数有两个零点,函数的两个零点满足 . 【答案】(1)(2)见解析 【解析】 (1)切线的斜率, 解,得 由幂函数与对数函数单调性比较及的单调性知,在区间有唯一零点,从而函数有两个零点. 来 源:

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|