ImageVerifierCode 换一换
格式:PPTX , 页数:32 ,大小:1.08MB ,
文档编号:6950592      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-6950592.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(北师大版数学必修二课件:173球.pptx)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版数学必修二课件:173球.pptx

1、-1-7 7.3 3球球第一页,共32页。第二页,共32页。1.球的截面球的截面(jimin)球面被经过球心的平面截得的圆叫作球的大圆球面被经过球心的平面截得的圆叫作球的大圆;被不经过球心的平面被不经过球心的平面截得的圆叫作球的小圆截得的圆叫作球的小圆.2.球的切线球的切线(1)当直线与球有唯一交点时当直线与球有唯一交点时,称直线与球相切称直线与球相切,其中它们的交点称为直线其中它们的交点称为直线与球的切点与球的切点.(2)过球外一点的所有切线的长度都相等过球外一点的所有切线的长度都相等,这切点的集合是一个这切点的集合是一个(y)圆圆,该圆面及所有切线围成了一个该圆面及所有切线围成了一个(y)

2、圆锥圆锥.第三页,共32页。3.球的表面积和体积球的表面积和体积(tj)S球面=4R2,V球=R3(其中(qzhng)R为球的半径).做一做直径(zhjng)为6的球的表面积和体积分别是(),144,36,144,36解析:球的半径为3,S球=432=36;V球=33=36.答案:D第四页,共32页。第五页,共32页。名师点拨1.球的表面积与体积由它的半径唯一确定(qudng),因此求球的表面积、体积的关键是求出球的半径.2.球的表面不像柱体、锥体和台体那样可以展开在一个平面上,即使是球面上任意小的一块,也不能展开在一个平面上,因此球的表面没有展开图.第六页,共32页。思考辨析判断下列说法是否

3、正确,正确的在后面的括号内打“”,错误的打“”.(1)过球外一点有且只有一条切线与球相切.()(2)球面上的任意三点确定一个平面.()(3)如果(rgu)一个球的体积变为原来的27倍,那么对应的球的表面积变为原来的3倍.()答案:(1)(2)(3)第七页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析探究探究一球的表面积与体积球的表面积与体积【例1】(1)平面截球O的球面所得圆的半径为1,球心O到平面的距离为 ,则此球的体积为.(2)已知S,A,B,C是球O表面上的点,SA平面ABC,SBBC,SA=1,AB=BC=2,则球O的表面积为.第八页,共32页。探究(tnj

4、i)一探究(tnji)二探究(tnji)三易错辨析第九页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析第十页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析反思感悟1.计算球的表面积和体积关键是计算球的半径,而计算半径的关键是寻找球心的位置.2.当球的半径增加为原来的2倍时,球的表面积增加为原来的4倍,球的体积增加为原来的8倍.3.注意公式的“双向”应用,也就是说当知道球的表面积或体积时,也可以求出球的半径.第十一页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析变式训练1(1)球的表面积扩大到原来的2倍,球的体积

5、扩大到原来的()第十二页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析第十三页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析(2)如图所示的是一个几何体的三视图,根据图中的数据可得该几何体的表面积为.第十四页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析(2)由三视图可知该几何体是由圆锥和半球组成的组合体.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,高为4,所以该几何体的表面积S=232+35=33.答案:(1)C(2)33第十五页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析

6、探究探究二球的表面积与体积的应用球的表面积与体积的应用【例2】一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?分析:先设球未取出时的水面高度和取出后的水面高度,则水面下降,减少的体积就是球的体积,建立一个关系式来解决.第十六页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析第十七页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析反思感悟1.球的体积和表面积有着非常重要的应用.在具体问题中,要分清是涉及体积还是涉及表面积问题,然后再利用等量

7、关系进行计算.2.涉及球的应用问题画出截面图是解题的关键.有关球的截面的性质:(1)用一个平面去截一个球,截面是圆面;(2)球心和截面圆圆心的连线垂直于截面;(3)球心到截面的距离d与球的半径R及截面的半径r满足勾股定理.第十八页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析变式训练2圆柱形烧杯内壁半径为5 cm,两个直径都是5 cm的铜球都浸没于烧杯的水中,若取出这两个铜球,则烧杯内的水面将下降()第十九页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析探究探究三球的切、接问题球的切、接问题【例3】正方体的内切球和外接球的表面积之比为()

8、答案:C 第二十页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析反思感悟1.有关球的常见切接问题球与旋转体的组合通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”“接点”作出截面图.2.球与正方体的切接问题若正方体的棱长为a,则:(1)正方体的内切球的直径为a,如图所示;第二十一页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析变式训练3一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为 ,底面周长为3,则这个球的体积为.第二十二页,共32页。探究(tnji)一探究

9、(tnji)二探究(tnji)三易错辨析解析:底面是正六边形,且底面周长为3,边长为 ,AD=1.第二十三页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析因考虑不全面而致误典例已知球的两个平行截面的面积分别为5和8,且距离为3,求这个球的表面积.第二十四页,共32页。探究(tnji)一探究(tnji)二探究(tnji)三易错辨析正解当两截面在球心的同侧时,解法同上.当两截面在球心的异侧时,d1+d2=3,由以上解法可知(d1-d2)(d1+d2)=3,纠错心得1.由于球是一个很特殊的对称体,满足条件的两截面可能出现在球心同侧或异侧.2.本例中错解显然遗漏了截面在球心

10、异侧的情况.第二十五页,共32页。123451.一个一个(y)几何体的三视图如图所示几何体的三视图如图所示,则该几何体的体积为则该几何体的体积为()第二十六页,共32页。12345答案(dn):A第二十七页,共32页。123452.若圆柱、圆锥的底面直径和高都等于若圆柱、圆锥的底面直径和高都等于(dngy)球的直径球的直径,则圆柱、圆锥、则圆柱、圆锥、球的体积之比为球的体积之比为()2 3 4 2 1 2答案(dn):D第二十八页,共32页。123453.设长方体的长、宽、高分别为设长方体的长、宽、高分别为2a,a,a,其顶点都在一个其顶点都在一个(y)球面上球面上,则该球的表面积为则该球的表

11、面积为()答案(dn):B第二十九页,共32页。123454.(2017贵州贵阳一模贵州贵阳一模)已知正四棱锥已知正四棱锥(lngzhu)的侧棱与底面的边长都为的侧棱与底面的边长都为3 ,则这个四棱锥则这个四棱锥(lngzhu)的外接球的表面积为的外接球的表面积为.解析:如图,设正四棱锥(lngzhu)底面的中心为O,则故正四棱锥的各个顶点到它的底面的中心的距离都为3,即正四棱锥外接球的球心(qixn)在它的底面的中心,且球的半径r=3,球的表面积S=4r2=36.答案:36第三十页,共32页。123455.过球的半径的中点过球的半径的中点,作一垂直于这条半径的截面作一垂直于这条半径的截面,已

12、知此截面的面积已知此截面的面积(min j)为为48 cm2,试求此球的表面积试求此球的表面积(min j)和体积和体积.解解:设球的半径为设球的半径为R,所作截面半径为所作截面半径为r,第三十一页,共32页。NoImage内容(nirng)总结7.3球。被不经过球心的平面截得的圆叫作球的小圆.。解析:球的半径为3,S球=432=36。答案:(1)C(2)33。探究二球的表面积与体积的应用。(2)球心和截面圆圆心的连线垂直于截面。(1)正方体的内切球的直径为a,如图所示。当两截面在球心的异侧时,d1+d2=3,。由以上解法(ji f)可知(d1-d2)(d1+d2)=3,。纠错心得1.由于球是一个很特殊的对称体,满足条件的两截面可能出现在球心同侧或异侧.第三十二页,共32页。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|