ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:691.58KB ,
文档编号:6962373      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-6962373.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(现有分享)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(三角函数图像的平移变换练习题 学习资料.docx)为本站会员(现有分享)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

三角函数图像的平移变换练习题 学习资料.docx

1、三角函数图像的平移、变换练习题今天讲这个专题有三个元素量:第一个是初始函数,第二个是变换过程,第三个是目标函数。这三个元素量组合成三种题型,它是知二求一,就是说任意两个是已知的,让你求第三个。所说它分三个题型:已知初始函数和变换过程,求目标函数;已知变换过程和目标函数,求初始函数;已知初始函数和目标函数,求变换过程。我告诉大家,前两个题型非常简单,我今天不给大家讲,我前面有讲2句话搞定三角函数图像平移变换问题,只要看过我这篇文章或者视频课,把这个点领悟透彻,这两题非常容易就做出来了。我给大家答案,大家可以自己去做一下,第一题答案是:A;第二题答案:B。今天就主要来讲一讲如何搞定第三种题型:已知

2、初始函数和目标函数,求变换过程。它为什么难度比较大呢,就是因为它给的两个函数的名称不一样,你首先是要统一名称,而且是唯一的,你如果统一成cosx就有可能有正确的先期,如果统一成sinx可能就没有正确选项。所以这类题只能出选择题,不能出填空题。为什么?因为填空它的答案不唯一!所以一般不会出填空题。为方便大家能将这个知识点理解透彻,我用常规方法解一道题讲原理,最后给大家讲秒杀方法,那么这种题目就可以10秒出答案!常规方法解例1:首先我统一成cosx看能不能选出答案。那么y=cos(x+/3)不变,我将y=sinx变换成y= cos(x+3/2),那前面的/3看成2/6,后面的3/2看成9/6。那么

3、只需后面平移成前面,所以怎样平移:左加右减,所以向右平移7/6个单位。大家发现,选项里是没有这个选项。所以这样做是不对的。并不是说我转成cos这种方式是错的,它是正确的。但为什么不对?后面再作讲解。假如说我同时平成sin:那就是:y=cos(x+/3)y=sin(/2+x+/3)y=sin(x+5/6)。那么如何将y=sinx 平移成y=sin(x+5/6)呢?那就是向左平移5/6个单位,直接选C。所以要统一成sin才能做,为什么?我给大家解释下,选项不唯一,那么那出正确答案的原则就是:平移最短路径!所以上面的题它不出平移7/6个单位,而是向左平移5/6个单位。只要抓住问题的实质,那么我就给大

4、家讲一个技巧,我怎么样保证平移的是最终路径?大家可以直接使用,正确率100%!那么大家只要记住两点:y=sinx就记点(/2,1),见到sin就将整体=/2,求x;y=cosx就记点(0,1),见到cos就将整体=0,求x。这样就能保证是最短路径。我们来验证一下:第一题:y=cos(x+/3)我就令x+/3=0x=-/3,y=sinx就令x=/2,我们画个数轴,由于是由y=sinx到y=cos(x+/3),那就是从/2到-/3,则得到向左移5/6个单位,答案就选C。再看第二题:见到sin就将整体=/2,在y=sin(2x-/6)中,令2x-/6 =/2x=/3,见到cos就将整体=0,而在y=

5、cos2x中,就令2x=0x=0。画数轴,要由y=cos2x到y=sin(2x-/6),大家看,是由0到/3,那么就是向右平移/3个单位,直接选B。接下来看第三题:见到sin就将整体=/2,在y=sin(2x+/3)中,令2x+/3 =/2x=/12,见到cos就将整体=0,而在y=cos2x中,就令2x=0x=0。画数轴,要由y=cos2x到y= sin(2x+/3),大家看,是由0到/12,那么就是向右平移/12个单位,直接选A。再看第四题:这道题首先需要用到辅助角公式,把y=sin3x+cos3x化成正弦型函数,这个辅助角公式该如何高效使用,在系统课里有详细讲解,在这里不展开讲,直接用就

6、得到y=2sin(3x+/4),见到sin就将整体=/2,那么令3x+/4=/2x=/12,见到cos就将整体=0,那么就令3x=0x=0。画数轴,是由0到/12,那么就是向右平移/12个单位,直接选C。再看第五题:这一题就需要大家动下脑筋!由于f(x)=Asin(x+/6)后面没有一个加减的非0数,所以它没有上下平移的,如果没有上下平移,由f(x)=Asin(x+/6)的图像与x轴交点的横坐标构成一个公差为/2的等差数列,这说明半个周期(T/2)就等于/2,即得到T=,=2/T=2。则:f(x)=Asin(x+/6)f(x)=Asin(2x+/6),见到sin就将整体=/2,令2x+/6=/

7、2x=/6;g(x)=Acosxg(x)=Acos2x,见到cos就将整体=0,令2x=0x=0;画数轴,由于是由y=f(x)平移到g(x),那就是由/6到0,那么就是向左平移/6个单位,直接选A。看最后第六题:首选求导f (x)=2cos(2x+/3),由f(x)=sin(2x+/3)平移成f (x)=2cos(2x+/3),那首先就明确纵坐标伸长2倍,答案就是A、C里选,f(x)=sin(2x+/3)见到sin就将整体=/2,令2x+/3=/2x=/12;f (x)=2cos(2x+/3)见到cos就将整体=0,令2x+/3=0x=-/6;画数轴,由f(x)平移到f (x),那就是从/12

8、到-/6,就是向左平移/4个单位,直接选C。我讲的这个方法是不是非常暴力,这种做法是100%的正确,大家可以放心使用。三角函数图像平移变换考点分析函数yAsin(x)图象的变换以及根据图象和简单性质确定A、的取值为高考中的一个热点,主要考查考生识图、辨图的能力及三角的恒等变换问题,题型多以客观题为主,且难度不大,属中低档题有时也作为解答题中的一问或某一环节中有所涉及题目分析本题函数需要利用辅助角公式转化成yAsin(x)的形式,辅助角笑起来吧?如果想不到用辅助角公式化简,那对于这道题就很恶心了。辅助角公式是什么?辅助角公式其实就是两角和差的正弦(或余弦)公式的逆过程:asin+bcos=根号(

9、a+b)sin(+),想起了吧?化简后再用诱导公式一化简就做好了这题。题目解析本题点评由函数ysinx的图象变换得到yAsin(x)(A0,0)的图象的步骤:注意点yAsin(x)(A0,0)中各个字母的含义:A所起的作用是图象上每个点的横坐标不变,纵坐标变化为原来的A倍,简称为振幅变换;所起的作用是图象上的每个点的纵坐标不变,横坐标变化为原来的(1)倍,简称为周期变换;所起的作用是将函数图象左右平移()个单位,简称为相位变换.特别注意:yAsin(x)在这种情况下平移前一定要讲x的系数提前,将系数化为1再平移。三角函数题型归纳与训练【题型归纳】题型一 定义法求三角函数值例1若的终边所在直线经

10、过点,则 【答案】【解析】直线经过二、四象限,又点P在单位圆上,若的终边在第二象限,则,若的终边在第四象限,则,综上可知【易错点】容易忽视对角终边位置进行讨论【思维点拨】定义法求三角函数值的两种情况:(1)已知角终边上一点P的坐标,则可先求出点P到原点的距离r,然后利用三角函数的定义求解(2)已知角的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题若直线的倾斜角为特殊角,也可直接写出角的三角函数值题型二 诱导公式的使用例1若,则=()A B C D【答案】D【解析】,故选D。【易错点】三角函数的诱导公式可简记为:“奇变偶不变,符号看象限

11、”。这里的“奇、偶”指的是的倍数的奇偶;“变与不变”指的是三角函数的名称变化;“符号看象限”的含义是:在该题中把整个角看作锐角时,所在象限的相应余弦三角函数值的符号。【思维点拨】利用诱导公式化简求值时的原则(1)“负化正”,运用的诱导公式将任意负角的三角函数化为任意正角的三角函数(2)“大化小”,利用k360(kZ)的诱导公式将大于360的角的三角函数化为0到360的三角函数(3)“小化锐”,将大于90的角化为0到90的角的三角函数(4)“锐求值”,得到0到90的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得题型三 三角函数的定义域或值域例1已知函数的定义域为,值域为,求和的值【答

12、案】=126,=23+12或=12+6,=1912【解析】 当0时,则,解得;当0时,则, 解得;当=0时,显然不符合题意=126,=23+12或=12+6,=1912【易错点】对函数的结构分析容易不到位,函数是一个复合函数,不是取最大值时,函数最大,因为它的前面还有个“2a”,而“2a”的符号不确定,直接影响了函数的最值,所以要分类讨论。对含有字母参数的数学问题,一定要认真分析。【思维点拨】1求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解2求解涉及三角函数的值域(最值)的题目一般常用以下方法:(1)利用sin x、cos x的值域;(2)形式复杂的函数应化为

13、yAsin(x)k的形式逐步分析x的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在给定区间上的值域(最值)问题题型四 三角函数的单调区间例1已知函数的部分图象如图所示(1)和的值;(2)函数在的单调增区间;(3)函数在区间上恰有个零点,求的最大值【经典错解】(1) ,所以 (2)令, 得,所以函数的单调增区间是(3),得或函数在每个周期上有两个零点,所以共有个周期,所以最大值为【答案】见解析【解析】(1) ,所以 (2)令, 得,当 时, 当时, 又因为,所以函数在的单调增区间为和 (3)同上【易错点】审题容易出错,在把求三角函数在区

14、间上的单调区间当作是求三角函数在R上的单调区间了所以求出函数在R上的单调增区间后,还要把增区间和求交集【思维点拨】求三角函数的单调区间时应注意以下几点:(1)形如yAsin(x)(A0,0)的函数的单调区间,基本思路是把x看作是一个整体,由2kx2k(kZ)求得函数的增区间,由2kx2k(kZ)求得函数的减区间(2)形如yAsin(x)(A0,0)的函数,可先利用诱导公式把x的系数变为正数,得到yAsin(x),由2kx2k(kZ)得到函数的减区间,由2kx2k(kZ)得到函数的增区间(3)对于yAcos(x),yAtan(x)等,函数的单调区间求法与yAsin(x)类似题型五 三角函数的周期

15、性例1已知的最小正周期是,则【答案】【解析】【易错点】三角函数的周期公式使用情景容易出错。只有把三角函数化为yAsin(x)和yAcos(x)后,才可以代入周期公式T=,已知中的函数形式是二次,不是一般式,所以要用降幂公式化简后再使用周期公式。【思维点拨】1三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断2求三角函数周期的方法(1)利用周期函数的定义;(2)利用公式:yAsin(x)和yAcos(x)的最小正周期为,ytan(x)的最小正周期为;(3)利用图象3三角函数的对称性正、余弦函数的图象既是中心对称图形,又

16、是轴对称图形正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用题型六 三角函数的图象变换例1把函数的图像上的点的横坐标伸长到原来的倍,纵坐标不变,得到的函数的解析式为 【答案】【解析】把函数的图像上的点的横坐标伸长到原来的2倍,纵坐标不变,得到的函数的解析式为故填【易错点】把函数的图像上的点的横坐标伸长到原来的2倍,纵坐标不变,得到的函数的解析式为所以填错在三角函数图像的伸缩变换理解不透彻(2)把函数y=f(x) 的图像上的点的横坐标伸长到原来的2倍,纵坐标不变,得到的函数为,也就是说只是把函数的解析中有“ ”的地方换成“”,其它的都不变,所以把函数的图像上

17、的点的横坐标伸长到原来的2倍,纵坐标不变,得到的函数的解析式为【思维点拨】确定yAsin(x)b(A0,0)的步骤和方法(1)求A,b,确定函数的最大值M和最小值m,则A,b(2)求,确定函数的周期T,则可得(3)求,常用的方法有:代入法:把图象上的一个已知点代入(此时A,b已知)或代入图象与直线yb的交点求解(此时要注意交点在上升区间上还是在下降区间上)五点法:确定值时,往往以寻找“五点法”中的某一个点为突破口具体如下:“第一点”(即图象上升时与x轴的交点)时x0;“第二点”(即图象的“峰点”)时x;“第三点”(即图象下降时与x轴的交点)时x;“第四点”(即图象的“谷点”)时x;“第五点”时

18、x2(如例2)题型七 三角函数的恒等变换例1已知则= 【答案】【解析】把三角方程平方 , 故填【易错点】在对三角函数的隐含条件挖掘不够导致容易出现增解三角函数的化简求值时,如果出现多值,就要注意挖掘已知中的隐含条件,以免增解在同一个直角坐标系中作出正弦和余弦函数的图像观察得:当时,;当时,;当时,【思维点拨】三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明(1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解(3)三角恒等式的证明,

19、要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可【巩固训练】题型一定义法求三角函数值1.已知角的终边上有一点P(t,t21)(t0),则tan的最小值为()2.A1 B2 C D【答案】B【解析】根据已知条件得tant2,当且仅当t1时,tan取得最小值21.已知角的终边上一点P的坐标为,则角的最小正值为()2.A B C D【答案】D【解析】由题意知点P在第四象限,根据三角函数的定义得cossin,故2k(kZ),所以的最小正值为1.已知角的终边经过点P(m,3),且cos,则m等于()2.A B C4 D4【答案】选C【解析】由题意可知,cos,又m0

20、,解得m4题型二诱导公式的使用1已知sin(3)2sin,则_【答案】【解析】法一:由sin(3)2sin得tan2原式法二:由已知得sin2cos原式2已知A(kZ),则A的值构成的集合是()A1,1,2,2 B1,1 C2,2 D1,1,0,2,2【答案】C【解析】当k为偶数时,A2;k为奇数时,A2题型三三角函数的定义域或值域1函数的部分图象如图所示,则函数表达式为()A BC D【答案】【解析】由图像得,则代入,得,故选2y23cos的最大值为_此时x_【解析】当cos1时,函数y23cos取得最大值5,此时x2k,从而x2k,kZ3函数y的定义域为_【答案】【解析】要使函数有意义则利

21、用数轴可得函数的定义域是题型四三角函数的单调区间1已知函数ysin,求:(1)函数的周期;(2)求函数在,0上的单调递减区间【解析】由ysin可化为ysin(1)周期T(2)令2k2x2k,kZ,得kxk,kZ所以xR时,ysin的减区间为,kZ从而x,0时,ysin的减区间为,2函数y|tanx|的增区间为_【答案】,kZ【解析】作出y|tanx|的图象,观察图象可知,y|tanx|的增区间是,kZ3已知函数f(x)sinxcosx,设af,bf,cf,则a,b,c的大小关系是()Aabc Bcab Cbac Dbca【答案】B【解析】f(x)sinxcosx2sin,因为函数f(x)在上单

22、调递增,所以ff,而cf2sin2sinf(0)f,所以ca0)的最小正周期为1,则它的图象的一个对称中心为()A B(0,0) C D【答案】C【解析】由条件得f(x)sin,又函数的最小正周期为1,故1,a2,故f(x)sin将x代入得函数值为0题型六三角函数的图象变换1要得到的图象,只须将的图象()A向右平移个单位 B向左平移个单位C向左平移个单位 D向右平移个单位【答案】D【解析】由于tan=,只须将函数的图象向右平移个单位就可以得到函数的图象,故选D3把函数ysin图象上各点的横坐标缩短为原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()Ax Bx C

23、x Dx【答案】A【解析】依题意得,经过图象变换后得到的图象相应的解析式是ysinsincos2x,注意到当x时,ycos()1,此时ycos2x取得最大值,因此直线x是该图象的一条对称轴3已知函数f(x)3sin,xR(1)画出函数f(x)在长度为一个周期的闭区间上的简图;(2)将函数ysinx的图象作怎样的变换可得到f(x)的图象?【答案】见解析【解析】(1)列表取值:xx02f(x)03030描出五个关键点并用光滑曲线连接,得到一个周期的简图(2)先把ysinx的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象题型七三角函数

24、的恒等变换1.已知函数f(x)sincos,xR2.(1)求f(x)的最小正周期和最小值;(2)已知cos(),cos(),0,求证:f()220【答案】见解析【解析】(1)f(x)sincossinsin2sin,T2,f(x)的最小值为2(2)证明:由已知得coscossinsin,coscossinsin两式相加得2coscos00,f()224sin2201.已知函数f(x)tan2.(1)求f的值;(2)设,若f2,求cos的值【答案】见解析【解析】解:(1)ftan2(2)因为ftantan()tan2,所以2,即sin2cos又sin2cos21,由解得cos2因为,所以cos,sin所以coscoscossinsin1.已知函数f(x)2cosxcossin2xsinxcosx2.(1)求f(x)的最小正周期;(2)当0,时,若f()1,求的值【答案】见解析【解析】解:(1)因为f(x)2cosxcossin2xsinxcosxcos2xsinxcosxsin2xsinxcosxcos2xsin2x2sin,所以最小正周期T(2)由f()1,得2sin1,又0,所以2,所以2或2,故或

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|