1、 8/8 6 阻尼振动 受迫振动 学 习 目 标 知 识 脉 络 1知道阻尼振动和阻尼振动能量的转化情况 2知道什么是受迫振动及产生条件,掌握物体做受迫振动的特点(重点)3知道共振现象,掌握产生共振的条件,知道常见的共振的应用和危害(重点)知识点一|固有振动、阻尼振动 先填空 1固有振动 如果振动系统不受外力的作用,此时的振动叫作固有振动,其振动频率称为固有频率 2阻尼振动(1)阻力作用下的振动 当振动系统受到阻力的作用时,振动受到了阻尼,系统克服阻尼的作用要做功,消耗机械能,因而振幅减小,最后停下来(2)阻尼振动 振幅逐渐减小的振动振动系统受到的阻尼越大,振幅减小得越快,阻尼振动的图象如图所
2、示,振幅越来越小,最后停止振动 再判断 1固有频率由系统本身决定 ()2阻尼振动的频率不断减小 ()8/8 3阻尼振动的振幅不断减小 ()后思考 1阻尼振动的振幅在减小的过程中,频率是否随着减小?【提示】阻尼振动的振动频率保持不变 2若物体所做的振动是等幅振动,此物体一定是无阻尼振动吗?【提示】不一定区分阻尼与无阻尼的条件是分析振子受不受阻力,而不是看振幅,若受阻力作用同时也有外力给系统做功补充能量,也能保证振动物体做等幅振动 核心点击 阻尼振动与简谐运动(无阻尼振动)的比较 振动类型 阻尼振动 无阻尼振动(简谐运动)产生条件 受到阻力作用 不受阻力作用 振动能量 振动能量有损失 振动能量保持
3、不变 振幅 如果没有能量补充,振幅越来越小 振幅不变 频率 不变 不变 振动图象 常见例子 悬挂的电灯被风吹动后开始振动,振幅越来越小,属于阻尼振动 弹簧振子的振动 1一单摆做阻尼振动,则在振动过程中()A振幅越来越小,周期也越来越小 B振幅越来越小,周期不变 C通过某一位置时,机械能减小 8/8 D机械能不守恒,周期不变 E机械能守恒,频率不变 解析:单摆做阻尼振动时,振幅会减小,机械能减小,振动周期不变,故选项 B、C、D 对,A、E 错 答案:BCD 2一单摆在空气中振动,振幅逐渐减小下列说法正确的是()A机械能逐渐转化为其他形式的能 B后一时刻的动能一定小于前一时刻的动能 C后一时刻的
4、势能一定小于前一时刻的势能 D后一时刻的机械能一定小于前一时刻的机械能 E后一时刻的动能可能大于前一时刻的动能 解析:单摆振动过程中,因不断克服空气阻力做功,使机械能逐渐转化为内能,选项 A 和 D 对;虽然单摆总的机械能在逐渐减小,但在振动过程中动能和势能仍不断地相互转化,动能转化为势能时,动能逐渐减小,势能逐渐增大,而势能转化为动能时,势能逐渐减小,动能逐渐增大,所以不能断言后一时刻的动能(或势能)一定小于前一时刻的动能(或势能),故选项 B、C 不对选项 E 对 答案:ADE 3如图所示是单摆做阻尼振动的振动图线 则摆球 A 时刻的动能_B 时刻的动能,摆球 A 时刻的势能_B时刻的势能
5、 解析:该题考查阻尼振动的图象以及能量的转化关系在单摆振动过程中,因不断克服空气阻力做功使机械能逐渐转化为内能;虽然单摆总的机械能在逐渐减小,但在振动过程中动能和势能仍不断地相互转化由于 A,B 两时刻,单摆 8/8 的位移相等,所以势能相等,但动能不相等 答案:大于 等于 阻尼振动的能量和周期(1)阻尼振动的振幅不断减小,能量不断减少,但阻尼振动的频率不变,其频率为固有频率,由系统本身决定(2)自由振动是一种理想情况,也叫简谐运动实际中的振动都会受到阻力的作用,当阻力较小时,可认为是简谐运动(3)阻尼振动中,机械能 E 等于动能 Ek和势能 Ep之和,即 EEkEp,E减小,但动能和势能相互
6、转化,当 Ep相等,Ek不相等,而从振动图象上可以确定 Ep的关系 知识点二|受迫振动、共振 先填空 1受迫振动(1)驱动力:作用于振动系统的周期性的外力(2)受迫振动:振动系统在驱动力作用下的振动(3)受迫振动的频率:做受迫振动的系统振动稳定后,其振动频率等于驱动力的频率,跟系统的固有频率没有关系 2.共振(1)定义:驱动力的频率等于振动物体的固有频率时,受迫振动的振幅最大的现象(2)条件:驱动力频率等于系统的固有频率(3)特征:共振时受迫振动的振幅最大(4)共振曲线:如图所示表示受迫振动的振幅 A 与驱 8/8 动力频率 f 的关系图象,图中 f0为振动物体的固有频率 再判断 1受迫振动的
7、频率等于振动系统的固有频率()2驱动力频率越大,振幅越大 ()3生活中应尽量使驱动力的频率接近振动系统的固有频率()后思考 1洗衣机启动和停止时,随着电机转速的变化,有时洗衣机会振动得很厉害,这是什么原因?【提示】当洗衣机电机转动的频率等于洗衣机的固有频率时,发生了共振现象,这时洗衣机振动得很厉害 2要防止共振,需要采取什么措施?【提示】尽量使驱动力的频率与固有频率间的差距增大 核心点击 1自由振动、受迫振动及共振的比较 振动类型 自由振动 受迫振动 共振 受力情况 仅受回复力 周期性驱动力 周期性驱动力 振动周期或频率 由系统本身性质决定,即固有周期或固有频率 由驱动力的周期或频率决定,即
8、TT驱或ff驱 T驱T固或 f驱f固 振动能量 振动物体的机械能不变 由产生驱动力的物体提供 振动物体获得的能量最大 常见例子 弹簧振子或单摆 机械运转时底座发生的振动 共振筛、声音的共鸣等 2.共振曲线的理解和应用(1)两坐标轴的意义:纵轴:受迫振动的振幅,如图所示 横轴:驱动力频率 8/8 (2)f0的意义:表示固有频率(3)认识曲线形状:ff0,共振;ff0或 ff0,振幅较小;f 与 f0相差越大,振幅越小(4)结论:驱动力的频率 f 越接近振动系统的固有频率 f0,受迫振动的振幅越大,反之振幅越小 4如图所示为受迫振动的演示装置,当单摆 A 振动起来后,通过水平悬绳迫使单摆 B、C
9、振动,则下列说法正确的是()A只有 A、C 摆振动周期相等 BA 摆的振幅比 B 摆的小 CB 摆的振幅比 C 摆的小 DA、B、C 三摆的振动周期相等 EB、C 两摆振动时的振幅与其摆长有关,而周期与摆长无关 解析:当单摆 A 振动起来后,单摆 B,C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项 A 错误,D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项 B 错误,选项 C、E 正确 答案:CDE 5如图所示为两个单摆受迫振动的共振曲线两个单摆的固有周期之比为TT_若两个受迫振动分别在月球上和地球上进行,且摆长相等,则图线_是月球上的单摆的共
10、振曲线 8/8 解析:由共振曲线及共振的条件可知,和的固有频率分别为 0.2 Hz 和0.5 Hz,周期之比 TT52.当摆长相等时,重力加速度越大,频率越大,月球表面重力加速度小于地球表面重力加速度,故图线是月球上的单摆的共振曲线 答案:52 6如图所示,在曲轴 A 上悬挂一个弹簧振子,如果转动把手,曲轴可以带动弹簧振子上下振动问:(1)开始时不转动把手,而用手往下拉振子,然后放手让振子上下振动,测得振子在 10 s 内完成 20 次全振动,振子做什么振动?其固有周期和固有频率各是多少?若考虑摩擦和空气阻力,振子做什么振动?(2)在振子正常振动过程中,以转速 4 r/s 匀速转动把手,振子的
11、振动稳定后,振子做什么运动?其周期是多少?解析:(1)用手往下拉振子使振子获得一定能量,放手后,振子因所受回复力与位移成正比,方向与位移方向相反(Fkx),所以做简谐运动,其周期和频率是由它本身的结构性质决定的,称固有周期(T固)和固有频率(f固),根据题意T固tn1020 s0.5 s,f固1T固10.5 Hz2 Hz.由于摩擦和空气阻力的存在,振子克服摩擦力和阻力做功消耗能量,使其振幅越来越小,故振动为阻尼振动 8/8(2)由于把手转动的转速为 4 r/s,它给弹簧振子的驱动力频率为 f驱4 Hz,周期 T驱0.25 s,故振子做受迫振动振动达稳定状态后,其频率(或周期)等于驱动力的频率(
12、或周期),而跟固有频率(或周期)无关即 ff驱4 Hz,TT驱0.25 s又因为振子做受迫振动得到驱动力对它做的功,补偿了振子克服阻力做功所消耗的能量,所以振子的振动属于受迫振动 答案:(1)简谐运动 0.5 s 2 Hz 阻尼振动(2)受迫振动 0.25 s 1分析受迫振动的方法(1)在分析受迫振动时,首先要弄清驱动力的来源(2)受迫振动的频率等于驱动力的频率,与物体的固有频率无关,因而首先应确定驱动力的频率(3)当驱动力的频率等于固有频率时,发生共振 2改变受迫振动的振幅的方法 当 f驱f固时,振幅最大若改变受迫振动的振幅,可采取两种方法:(1)改变给予振动系统周期性外力的周期,即改变驱动力频率(2)了解影响固有频率的因素,改变固有频率
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。