1、1.理解和掌握直角三角形的性质和判定及斜边上中线的性质;重点2.会运用直角三角形的性质和判定解决根本问题难点学习目标三角形顶点与对边中点的连线段.问题1 直角三角形的定义是什么?问题2 三角形内角和的性质是什么?有一个是直角的三角形叫直角三角形.三角形内角和等于180.这节课我们一起探索直角三角形的判定与性质.导入新课导入新课复习引入问题3 三角形中线的定义是什么?如图1-1,在RtABC中,C=90,两锐角的和等于多少呢?图1-1 在RtABC中,因为 C=90,由三角形内角和定理,可得A+B=90.讲授新课讲授新课直角三角形的两个锐角互余一结论结论直角三角形的两个锐角互余.由此得到:问题:
2、有两个锐角互余的三角形是直角三角形吗?如图1-2,在ABC中,A+B=90,那么ABC是直角三角形吗?在在ABC中,因为中,因为 A+B+C=180,又又A+B=90,所以所以C=90.于是于是ABC是直角三角形是直角三角形.图1-2有两个锐角互余的三角形是直角三角形二结论结论有两个角互余的三角形是直角三角形.由此得到:例 已知:如图,CD是ABC的AB边上的中 线,且 .求证:ABC是直角三角形.12CDAB 典例精析证明:因为 ,所以 1=A,(等边对等角)2=B.12CDAB=BD=AD 根据三角形内角和性质,有 A+B+ACB=180,即得A+B+1+2=180,2(A+B)=180.
3、所以 A+B=90.根据直角三角形判定定理,所以ABC是直角三角形.问题:如图1-3,画一个RtABC,并作出斜边AB上的中线CD,比较线段CD 与线段AB 之间的数量关系,你能得出什么结论?图1-3直角三角形斜边上的中线等于斜边的一半三我测量后发现CD=AB.12线段CD 比线段AB短.图1-3是否对于任意一个RtABC,都有 CD=成立呢?12AB图1-4 如图1-3,如果中线CD=AB,则有DCA=A.由此受到启发,在图1-4 的RtABC中,过直角顶点C作射线 交AB于 ,使 ,12CD=ADD =AD CA则 .CD图1-3A+B=90,又 90D CA+D CB,BDCB.CD=B
4、D.故得12CD=AD=BD=AB.D 点 是斜边上的中点,即 是斜边 的中线.ABCDCD从而CD与 重合,且CDAB.12图1-4结论结论直角三角形斜边上的中线等于斜边的一半.由此得到:1.在RtABC中,斜边上的中线CD=2.5cm,那么斜边 AB的长是多少?解:AB=2CD=22.5=5(cm).当堂练习当堂练习 2.如图,ABCD,BAC和ACD的平分线相交于H点,E为AC的中点,EH=2.那么AHC是直角三角形吗?为什么?假设是,求出AC的长.解:因为 ABCD,所以 BAC+DCA=180.又 ,所以所以AHC是直角三角形.在RtAHC中,EH为斜边上的中线,所以有 ,由EH=2
5、易知AC=4.12CAHBAC 12ACHDCA 1902CAH+ACHBAC+DCA=()()12EHAC 1.理解和掌握直角三角形的性质和判定及斜边上中线的性质;重点2.会运用直角三角形的性质和判定解决根本问题难点学习目标三角形顶点与对边中点的连线段.问题1 直角三角形的定义是什么?问题2 三角形内角和的性质是什么?有一个是直角的三角形叫直角三角形.三角形内角和等于180.这节课我们一起探索直角三角形的判定与性质.导入新课导入新课复习引入问题3 三角形中线的定义是什么?如图1-1,在RtABC中,C=90,两锐角的和等于多少呢?图1-1 在RtABC中,因为 C=90,由三角形内角和定理,
6、可得A+B=90.讲授新课讲授新课直角三角形的两个锐角互余一结论结论直角三角形的两个锐角互余.由此得到:问题:有两个锐角互余的三角形是直角三角形吗?如图1-2,在ABC中,A+B=90,那么ABC是直角三角形吗?在在ABC中,因为中,因为 A+B+C=180,又又A+B=90,所以所以C=90.于是于是ABC是直角三角形是直角三角形.图1-2有两个锐角互余的三角形是直角三角形二结论结论有两个角互余的三角形是直角三角形.由此得到:例 已知:如图,CD是ABC的AB边上的中 线,且 .求证:ABC是直角三角形.12CDAB 典例精析证明:因为 ,所以 1=A,(等边对等角)2=B.12CDAB=B
7、D=AD 根据三角形内角和性质,有 A+B+ACB=180,即得A+B+1+2=180,2(A+B)=180.所以 A+B=90.根据直角三角形判定定理,所以ABC是直角三角形.问题:如图1-3,画一个RtABC,并作出斜边AB上的中线CD,比较线段CD 与线段AB 之间的数量关系,你能得出什么结论?图1-3直角三角形斜边上的中线等于斜边的一半三我测量后发现CD=AB.12线段CD 比线段AB短.图1-3是否对于任意一个RtABC,都有 CD=成立呢?12AB图1-4 如图1-3,如果中线CD=AB,则有DCA=A.由此受到启发,在图1-4 的RtABC中,过直角顶点C作射线 交AB于 ,使 ,12CD=ADD =AD CA则 .CD图1-3A+B=90,又 90D CA+D CB,BDCB.CD=BD.故得12CD=AD=BD=AB.D 点 是斜边上的中点,即 是斜边 的中线.ABCDCD从而CD与 重合,且CDAB.12图1-4结论结论直角三角形斜边上的中线等于斜边的一半.由此得到:1.在RtABC中,斜边上的中线CD=2.5cm,那么斜边 AB的长是多少?解:AB=2CD=22.5=5(cm).当堂练习当堂练习