ImageVerifierCode 换一换
格式:PPTX , 页数:29 ,大小:229.63KB ,
文档编号:7980689      下载积分:2 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-7980689.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(风feng866)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(11.2.2三角形的外角(课件)2024-2025学年度-人教版 数学八年级上册.pptx)为本站会员(风feng866)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

11.2.2三角形的外角(课件)2024-2025学年度-人教版 数学八年级上册.pptx

1、第 十 一 章三角形三角形11.11.2.2 2.2 三角形的外角三角形的外角学习目标学习目标1.理解并掌握三角形的外角的概念2.能够在能够复杂图形中找出外角.(难点)3.掌握三角形的一个外角等于与它不相邻的两个内角 的和(重点)4.会利用三角形的外角性质解决问题.复习引入复习引入1.在ABC中,A=80,B=52,则C=.3.什么是三角形的内角?其内角和等于多少?48 三角形相邻两边组成的角叫作三角形的内角,它们的和是180.2.如图,在ABC中,A=70,B=60,则ACB=,ACD=.ABCD50 130精讲互动精讲互动u三角形外角的定义如图,把ABC的一边BC延长,得到ACD,像这样,

2、三角形的一边与另一边的延长线组成的角,叫做三角形的外角.ACD是ABC的一个外角CBAD问题1 如图,延长AC到E,BCE是不是ABC的一个外角?DCE是不是ABC的一个外角?E在三角形每个顶点处都有两个外角.ACD 与BCE为对顶角,ACD=BCE;CBADBCE是ABC的一个外角,DCE不是ABC的一个外角.问题2 如图,ACD与BCE有什么关系?在三角形的每个顶点处有多少个外角?ABC画一画 画出ABC的所有外角,共有几个呢?每一个三角形都有6个外角 每一个顶点相对应的外角都有2个,且这2个角为对顶角.三角形的外角应具备的条件:角的顶点是三角形的顶点;角的一边是三角形的一边;另一边是三角

3、形中一边的延长线.ACD是ABC的一个外角CBAD 每一个三角形都有6个外角归纳整理FABCDE如图,BEC是哪个三角形的外角?AEC是哪个三角形的外角?EFD是哪个三角形的外角?BEC是AEC的外角;AEC是BEC的外角;EFD是BEF和DCF的外角.练一练三角形的外角ACBD相邻的内角相邻的内角不相邻的内角问题1 如图,ABC的外角BCD与其相邻的内角ACB有什么关系?BCD与ACB互补.问题2 如图,ABC的外角BCD与其不相邻的两内角(A,B)有什么关系?三角形的外角ACBD相邻的内角相邻的内角不相邻的内角A+B+ACB=180,BCD+ACB=180,A+B=BCD.你能用作平行线的

4、方法证明此结论吗?D证明:过C作CE平行于AB,ABC121=B,(两直线平行,同位角相等)2=A,(两直线平行,内错角相等)ACD=1+2=A+B.E已知:如图,ABC,求证:ACD=A+B.验证结论u三角形内角和定理的推论ABCD(三角形的外角等于与它不相邻的两个内角的和.u应用格式:ACD是ABC的一个外角 ACD=A+B.知识要点练一练:说出下列图形中1和2的度数:ABCD(80 60(21(1)ABC(2150 32(2)1=40,2=140 1=18,2=130 例1 如图,A=42,ABD=28,ACE=18,求BFC的度数.BEC是AEC的一个外角,BEC=A+ACE,A=42

5、,ACE=18,BEC=60.BFC是BEF的一个外角,BFC=ABD+BEF,ABD=28,BEC=60,BFC=88.解:FACDEB典例精析例2 如图,P为ABC内一点,BPC150,ABP20,ACP30,求A的度数解析:延长BP交AC于E或连接CP并延长,构造三角形的外角,再利用外角的性质即可求出A的度数E解:延长BP交AC于点E,则BPC,PEC分别为PCE,ABE的外角,BPCPECPCE,PECABEA,PECBPCPCE 15030120.APECABE12020100.【变式题】(一题多解)如图,A=51,B=20,C=30,求BDC的度数.ABCD(51 20 30 思路

6、点拨:添加适当的辅助线将四边形问题转化为三角形问题.ABCD(20 30 解法一:连接AD并延长于点E.在ABD中,1+ABD=3,在ACD中,2+ACD=4.因为BDC=3+4,BAC=1+2,所以BDC=BAC+ABD+ACD=51+20+30=101.E)12)3)4你发现了什么结论?ABCD(51 20 30 E)1解法二:延长BD交AC于点E.在ABE中,1=ABE+BAE,在ECD中,BDC=1+ECD.所以BDC=BAC+ABD+ACD=51+20+30=101.解法三:连接延长CD交AB于点F(解题过程同解法二).)2F 解题的关键是正确的构造三角形,利用三角形外角的性质及转化

7、的思想,把未知角与已知角联系起来求解.总结如图 ,试比较2、1的大小;如图 ,试比较3、2、1的大小.图图解:2=1+B,21.解:2=1+B,3=2+D,321.三角形的外角大于与它不相邻的内角.例3 如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE=2+3,CBF=1+3,ACD=1+2.又知又知1+2+3=180,所以所以BAE+CBF+ACD=2(1+2+3)=360.ABCEFD(213你还有其他解法吗?解法二:如图,BAE+1=180 ,CBF+2=180 ,ACD+3=180 ,又知1+2+3=180,+

8、得BAE+CBF+ACD+(1+2+3)=540,所以BAE+CBF+ACD=540-180=360.ABCEFD(213解法三:过A作AM平行于BC,3 4BC1234A2 BAM,所以 1 2 3 1 4 BAM=360M2 3 4BAM,结论:三角形的外角和等于360.思考 你能总结出三角形的外角和的数量关系吗?DEF当堂练习当堂练习 1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和.()(2)三角形的外角和等于它的内角和的2倍.()(3)三角形的一个外角等于两个内角的和.()(4)三角形的一个外角等于与它不相邻的两个内角的和.()(5)三角形的一个外角大于任何一个内

9、角.()(6)三角形的一个内角小于任何一个与它不相邻的外角.()2.如图,AB/CD,A37,C63,那么F 等于 ()FABECDA.26B.63C.37D.60A3.(1)如图,BDC是_ 的外角,也是 的外角;(2)若B=45,BAE=36,BCE=20,试求AEC的度数.ABCDEADEADC解:根据三角形外角的性质有ADC=B+BCE,AEC=ADC+BAE.所以AEC=B+BCE+BAE =45+20+36=101.ABCDE12FG解:1是FBE的外角,1=B+E,同理2=A+D.在CFG中,C+1+2=180,A+B+C+D+E=180.3.如图,求A+B+C+D+E的度数.能力提升:123BACPNMDEF4.如图,试求出ABCDEF=_.360课堂小结课堂小结三角形的外角定 义角一边必须是三角形的一边,另一边必须是三角形另一边的延长线性 质三角形的一个外角等于与它不相邻的两个内角的和三 角 形的 外 角和三角形的外角和等于360

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|