1、5.3 一元一次方程的应用第3课时 行程问题学 习 目 标1.1.借助借助“线段图线段图”分析行程问题中的数量关系,从而建立方分析行程问题中的数量关系,从而建立方程解决实际问题程解决实际问题;(重点);(重点)2.2.充分利用行程问题中的速度、路程、时间的关系列方程解充分利用行程问题中的速度、路程、时间的关系列方程解决问题决问题.(难点)(难点)新 课 导 入 1.我坐车以我坐车以3030公里公里/小时的速度从家小时的速度从家出发去奶奶家需要出发去奶奶家需要4 4小时,小时,那么那么我家到奶奶家有我家到奶奶家有_公里公里120120 2.如果我想用如果我想用3 3小时的时间从家出发到奶奶家,那
2、么我需要的速小时的时间从家出发到奶奶家,那么我需要的速度为度为_公里公里/小时小时.3.如果我以如果我以6060公里公里/小时的速度从家出发到奶奶家,那么需要用小时的速度从家出发到奶奶家,那么需要用_小时小时.40402 2速度速度时间时间路程路程路程时间路程时间路程速度路程速度速度速度时间时间合 作 探 究 小明每天早上要在小明每天早上要在7 7:5050之前赶到距家之前赶到距家1000 1000 m的学校上学的学校上学.一一天,小明以天,小明以8080m/min的速度出发,的速度出发,5 5min后,小明的爸爸发现他忘了后,小明的爸爸发现他忘了带语文书带语文书.于是,爸爸立即以于是,爸爸立
3、即以180180m/min的速度去追小明,并且在途的速度去追小明,并且在途中追上了他中追上了他.爸爸追上小明用了多长时间?追上小明时,距离学校爸爸追上小明用了多长时间?追上小明时,距离学校还有多远?还有多远?(1 1)问题中有哪些已知量和未知量?)问题中有哪些已知量和未知量?解:(解:(1 1)已知量)已知量:小明家到学校小明家到学校1000 1000 m、小明的速度小明的速度8080m/min、小明已出发小明已出发5 5min、小明爸爸的速度、小明爸爸的速度180180m/min;未知量未知量:小明爸爸追上小明用的时间、小明爸爸追上小明用的时间、小明爸爸追上小明时距离学校多远小明爸爸追上小明
4、时距离学校多远.合 作 探 究假设爸爸追上小明用了假设爸爸追上小明用了 x 分钟分钟.180180 x80805 58080 x追上追上爸爸追赶小明时走的路程:爸爸追赶小明时走的路程:180180 x小明小明5 5min走的路走的路程:程:80805 5小明在爸爸追时走小明在爸爸追时走的路程:的路程:8080 x(2 2)想象一下追及的过程,你能用一个图直观表示问题)想象一下追及的过程,你能用一个图直观表示问题中各个量之间的关系吗?中各个量之间的关系吗?合 作 探 究180180 x8058080 x追上爸爸爸爸小明小明解:(解:(3 3)设爸爸追上小明用了设爸爸追上小明用了x min.根据根
5、据题意,得题意,得 180180 x8080 x80805.5.因此,爸爸追上小明用了因此,爸爸追上小明用了4 min,此时距离学校还有,此时距离学校还有280280m.解,得解,得 x4.4.【分析】当爸爸追上小明【分析】当爸爸追上小明时,两时,两人所行路程人所行路程相等相等.100010001801804 4280280(m)对于行程问题,通常借助对于行程问题,通常借助“线段图线段图”来分析问题中的来分析问题中的数量关系数量关系典 例 精 析 例例1 1 小明和小华两人在小明和小华两人在400400米的环形跑道上练习长跑,小米的环形跑道上练习长跑,小明每明每分钟分钟跑跑260260米,小华
6、每米,小华每分钟分钟跑跑300300米,两人起跑时站在米,两人起跑时站在跑道同一位置跑道同一位置.(1 1)如果小明起跑后)如果小明起跑后1 1min小华才开始同向跑,小华才开始同向跑,那么小华用那么小华用多长多长时间能追上小明?时间能追上小明?解解:(:(1 1)设小华用设小华用 x min追上小明追上小明.根据题意根据题意,得得260260(x1 1)300300 x 解,得解,得 x6.5.6.5.所以小华用所以小华用6.56.5min追上小明追上小明.典 例 精 析(2 2)如果小明起跑后)如果小明起跑后1 1min小华开始反向跑,小华开始反向跑,那么小华起那么小华起跑后多跑后多长时间
7、两人首次相遇?长时间两人首次相遇?【思路导航】【思路导航】画出线段示意图分析画出线段示意图分析,从两人所走的路程找从两人所走的路程找出等出等量关系量关系,列方程求解列方程求解.解解:(:(2 2)设小华起跑后设小华起跑后 x min两人首次相遇两人首次相遇.根据题意根据题意,得得 260260(x 1 1)300300 x 400400,解,得解,得 x 0.25.0.25.所以小华起跑后所以小华起跑后0.250.25min两人首次相遇两人首次相遇.思 考用一元一次方程解决实际问题的一般步骤如图所示:用一元一次方程解决实际问题的一般步骤如图所示:新 知 小 结1.1.行程问题的基本公式行程问题
8、的基本公式.(1 1)路程)路程_时间;速度时间;速度_时间;时间;_ _ 路程速度路程速度.(2 2)轮船航行时的相对速度)轮船航行时的相对速度.顺水速度静水速度顺水速度静水速度 ;逆水速度逆水速度 水流速度水流速度.(3 3)相遇问题:)相遇问题:s s甲甲 s s乙乙 s s总总.速度速度路程路程时间时间水流速度水流速度静水速度静水速度(4 4)追及问题:)追及问题:s s甲甲 s s乙乙 s s0 0(s s0 0为初始距离)为初始距离).(5 5)环形跑道上同时出发的两个人,环形跑道上同时出发的两个人,跑得快的人第一次追上跑得快的人第一次追上 跑跑得慢的人,要多跑得慢的人,要多跑 .
9、一圈一圈针 对 练 习1.1.操场操场一周是一周是400400米,小米,小明每秒跑明每秒跑5 5米米,小小华骑自行车华骑自行车每秒每秒行驶行驶1515米米,两两人绕跑道同时同地同人绕跑道同时同地同向而行,他向而行,他俩俩能再次相遇能再次相遇吗?如吗?如果能果能相遇,什么相遇,什么时候第一次相遇?时候第一次相遇?小华小华小明小明他俩能相遇,第一次相遇时他俩能相遇,第一次相遇时小华比小明小华比小明多跑了一圈多跑了一圈.等量等量关系:小华路程小明路程操场一周的长度关系:小华路程小明路程操场一周的长度.针 对 练 习解:设经过解:设经过 x 秒两人第一次相遇秒两人第一次相遇.依题意,得依题意,得 15
10、15x5 5x400400,解,得解,得 x40.40.所以,经过所以,经过4040秒两人第一次相遇秒两人第一次相遇.等量等量关系:小华路程关系:小华路程小明路程小明路程操场一周的长度操场一周的长度.1.1.操场一周是操场一周是400400米,小明每秒跑米,小明每秒跑5 5米米,小华骑自行车每秒行驶小华骑自行车每秒行驶1515米米,两人绕跑道同时同地同向而行,他俩能再次相遇吗?如果能相遇,什两人绕跑道同时同地同向而行,他俩能再次相遇吗?如果能相遇,什么时候第一次相遇?么时候第一次相遇?针 对 练 习 2.2.操场操场一周是一周是400400米,小米,小明每秒跑明每秒跑5 5米米,小小华骑自行车
11、华骑自行车每秒行驶每秒行驶1515米米,两两人绕跑道人绕跑道同时同地同时同地相背相背而而行,则行,则两个人何时两个人何时首次首次相遇?相遇?当他们首次相遇当他们首次相遇时时,他们他们的总的总路程路程等于操场的等于操场的一周的长度一周的长度.小华小华小明小明等量等量关系:小明路程关系:小明路程小华路程小华路程操场一周的长度操场一周的长度.针 对 练 习解:设经过解:设经过 x 秒两人首次相遇秒两人首次相遇.依题意,得依题意,得 1515x5 5x400400 解,得解,得 x2020所以,经过所以,经过2020秒两人首次相遇秒两人首次相遇.等量关系:小明路程小华路程操场一周的长度等量关系:小明路
12、程小华路程操场一周的长度.2.2.操场一周是操场一周是400400米,小明每秒跑米,小明每秒跑5 5米米,小华骑自行车每秒行驶小华骑自行车每秒行驶1515米米,两人绕跑道两人绕跑道同时同地同时同地相背相背而行,则两个人何时而行,则两个人何时首次首次相遇?相遇?课 堂 总 结沿圆周运动同时同地(环形跑道问题)沿圆周运动同时同地(环形跑道问题)甲、乙第一次相遇,一般有如下两种情形:甲、乙第一次相遇,一般有如下两种情形:同时同地、同向而行(追及同时同地、同向而行(追及问题):问题):同时同地、背向而行(相遇同时同地、背向而行(相遇问题):问题):S S快快S S慢慢环形周长环形周长S S快快S S慢
13、慢环形周长环形周长随 堂 检 测 1.A,A,B B两站间的距离为两站间的距离为 335 335km,一一列慢车从列慢车从A A站开往站开往B B站站,每每小时小时行驶行驶55 55 km,慢车慢车行驶行驶1 1小时小时后后,另另有一列快车从有一列快车从B B站开往站开往A A站站,每小时每小时行驶行驶85 85 km.设快车行驶了设快车行驶了x小时后与慢车小时后与慢车相遇相遇,则则可可列方程为列方程为()A A.5555x8585x335335 B B.55(55(x1)1)8585x335335C C.5555x85(85(x1)1)335335 D D.5555(x1)1)8585x33
14、5335等量关系:慢车路程等量关系:慢车路程快车路程快车路程335.335.D D随 堂 检 测 2 2.在在800800米的环形跑道上有两人在练习中长跑,甲每分钟米的环形跑道上有两人在练习中长跑,甲每分钟跑跑320320米,乙每分钟跑米,乙每分钟跑280280米,若两人同时同地同向起跑,米,若两人同时同地同向起跑,t 分钟后第一次相遇,则分钟后第一次相遇,则 t 的值为的值为 .2 20 0等量等量关系关系:甲甲路程路程乙乙路程路程800.800.320320t280280t800800随 堂 检 测3.A3.A,B B两地相距两地相距8080千米,甲、乙两人同时分别从千米,甲、乙两人同时分
15、别从A A,B B两地出两地出发发相向而行相向而行,甲的速度是,甲的速度是9 9千米千米/时,乙的速度是时,乙的速度是6 6千米千米/时经时经过多长时间两人相距过多长时间两人相距5 5千米?千米?9x6x805AB解:设解:设经过经过x小时后两人相距小时后两人相距5 5千米千米.根据根据题意,得题意,得 9 9x5 56 6x8 80.0.解解,得得 x5 5.所以,所以,经过经过5 5小时后两人相距小时后两人相距5 5千米千米.情况一情况一【分析】等量关系:【分析】等量关系:甲路程甲路程乙路程乙路程5 580.80.随 堂 检 测情况二情况二9x6x805AB【分析】等量关系:甲路程【分析】等量关系:甲路程5 5乙路程乙路程80.80.课 堂 总 结行程问题的行程问题的基本公式基本公式行程问题行程问题(1 1)路程)路程速度速度时间时间(2 2)速度)速度路程时间路程时间(3 3)时间)时间路程速度路程速度追及、相遇追及、相遇问题问题(1 1)相遇问题:相遇问题:s s甲甲s s乙乙s s总总(2 2)追)追及问题:及问题:s s甲甲s s乙乙s s0 0 (s s0 0为初始距离)为初始距离)
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。