1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数是正实数,则实数的值为( )ABCD2已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1
2、C3D43设函数定义域为全体实数,令有以下6个论断:是奇函数时,是奇函数;是偶函数时,是奇函数;是偶函数时,是偶函数;是奇函数时,是偶函数是偶函数;对任意的实数,那么正确论断的编号是( )ABCD4如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD5已知函数,若恒成立,则满足条件的的个数为( )A0B1C2D36下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数24511122825162212542616221250272816155928321
3、71463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.57已知平面向量,满足,且,则与的夹角为( )ABCD8盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD9如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD81
4、0已知复数满足,且,则( )A3BCD11函数的一个零点在区间内,则实数a的取值范围是( )ABCD12设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项满足,则_.14函数的值域为_.15的二项展开式中,含项的系数为_16已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,直线的倾斜角为,且经过点以坐标原点O为
5、极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C()求出直线的参数方程和曲线C的直角坐标方程;()设直线与曲线C交于P,Q两点,求的值18(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.19(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.20(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒
6、成立,求实数a的取值范围;(3)证明:对一切,都有成立21(12分)如图,在四棱锥中,平面平面,.()求证:平面;()若锐二面角的余弦值为,求直线与平面所成的角.22(10分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.2、C【解析】由线面垂直的性质,结合勾股定理
7、可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也
8、可以用反证法来说明命题的不成立.属于一般性题目.3、A【解析】根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,此时,故错误;故正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.4、B【解析】建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【点睛
9、】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.5、C【解析】由不等式恒成立问题分类讨论:当,当,当,考查方程的解的个数,综合得解【详解】当时,满足题意,当时,故不恒成立,当时,设,令,得,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合得:满足条件的的个数是2个,故选:【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.6、B【解析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一
10、直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.7、C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.8、B【解析】由题意,取的3个球
11、的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.9、A【解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键10、C【解析】设,则,利用和求得,
12、即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.11、C【解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.12、D【解析】由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇
13、偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法【详解】,时,得,又,()故答案为:【点睛】本题考查求数列通项公式,由已知条件类比已知求的解题方法求解14、【解析】利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为 故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。15、【解析】写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】
14、本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.16、【解析】由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点 抛物线方程为 ,准线方程为过作准线的垂线,垂足为,则 设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得: 或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准
15、方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()(t为参数),;()1.【解析】()直接由已知写出直线l1的参数方程,设N(,),M(1,1),(0,10),由题意可得,即4cos,然后化为普通方程;()将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|AQ|的值【详解】()直线l1的参数方程为,(t为参数)即(t为参数)设N(,),M(1,1),(0,10),则,即,即=4cos,曲线C的直角坐标方程
16、为x2-4x+y2=0(x0).()将l1的参数方程代入C的直角坐标方程中,得,即,t1,t2为方程的两个根,t1t2=-1,|AP|AQ|=|t1t2|=|-1|=1【点睛】本题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,训练了直线参数方程中参数t的几何意义的应用,是中档题18、(1)(x1)2y24,直线l的直角坐标方程为xy20;(2)3.【解析】(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(
17、1)由曲线C的参数方程 (为参数) (为参数),两式平方相加,得曲线C的普通方程为(x1)2y24;由直线l的极坐标方程可得coscossinsincossin2,即直线l的直角坐标方程为xy20.(2)由题意可得P(2,0),则直线l的参数方程为 (t为参数)设A,B两点对应的参数分别为t1,t2,则|PA|PB|t1|t2|,将 (t为参数)代入(x1)2y24,得t2t30,则0,由韦达定理可得t1t23,所以|PA|PB|3|3.19、(1)(2)见解析【解析】(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,当时,即可求得答案.【详解】(1),函数在处的切
18、线方程为.(2)要证对任意恒成立.即证对任意恒成立.设,当时,令,解得,当时,函数在上单调递减;当时,函数在上单调递增.,当时,对任意恒成立,即当时,对任意恒成立.【点睛】本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求切线方程的解法和根据导数求证不等式恒成立的方法,考查了分析能力和计算能力,属于难题.20、 (1) (2)( (3)见证明【解析】(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最
19、值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道 ,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的
20、解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.21、()详见解析;().【解析】()由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;()在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余弦,即可得到的关系,从而得解;【详解】解:()证明:在中,解得,则,从而因为平面平面,平面平面所以平面,又因为平面,所以,因为,平面,平面,所以平面;() 解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则设平面的法向量为,则,即,令,则又平面的一个法
21、向量,则从而,故则直线与平面所成的角为,大小为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.22、(1) (2)【解析】(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。