1、2024-2025学年湖北省广水市重点达标名校初三下学期第一次模拟数学试题注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将144
2、00用科学记数法表示为()A14.4103B144102C1.44104D1.441042如图,在直角坐标系中,等腰直角ABO的O点是坐标原点,A的坐标是(4,0),直角顶点B在第二象限,等腰直角BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()Ay=2x+1By=x+2Cy=3x2Dy=x+23周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园图中描述了小丽路上的情景,下列说法中错误的是()A小丽从家到达公园共用时间20分钟B公园离小
3、丽家的距离为2000米C小丽在便利店时间为15分钟D便利店离小丽家的距离为1000米4已知二次函数y=x2+bx9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()Ax=1Bx=Cx=1Dx=5下列计算结果是x5的为()Ax10x2 Bx6x Cx2x3 D(x3)26如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A1B2C3D47某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套设安排
4、x名工人生产螺钉,则下面所列方程正确的是( )A21000(26x)=800xB1000(13x)=800xC1000(26x)=2800xD1000(26x)=800x8一个圆锥的侧面积是12,它的底面半径是3,则它的母线长等于()A2 B3 C4 D69函数yax+b与ybx+a的图象在同一坐标系内的大致位置是()ABCD10某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100二、填空题(本大题共
5、6个小题,每小题3分,共18分)11已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_12请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= 13我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.14一个正多边形的每个内角等于,则它的边数是_15如图,直线交于点,与轴负半轴,轴正半轴分别交于点,的延长线相交于点,
6、则的值是_16如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D当ODA是等边三角形时,这两个二次函数的最大值之和等于_三、解答题(共8题,共72分)17(8分)杨辉算法中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18(8分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上
7、一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由19(8分)先化简,后求值:(1)(),其中a120(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CEAB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长小何根据学习函数的经验,将此问题
8、转化为函数问题解决小华假设AE的长度为xcm,线段DE的长度为ycm(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm01.62.53.34.04.7 5.85.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,A
9、E的长度约为 cm21(8分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作P,则称点Q为P的“关联点”,P为点Q的“关联圆”(1)已知O的半径为1,在点E(1,1),F(,),M(0,-1)中,O的“关联点”为_;(2)若点P(2,0),点Q(3,n),Q为点P的“关联圆”,且Q的半径为,求n的值;(3)已知点D(0,2),点H(m,2),D是点H的“关联圆”,直线yx+4与x轴,y轴分别交于点A,B若线段AB上存在D的“关联点”,求m的取值范围22(10分)有这样一个问题:探究函数的图象与性质小怀根据学习函数的经验,对函数的图象与性质进行了探究下面是小怀的探究过
10、程,请补充完成:(1)函数的自变量x的取值范围是 ;(2)列出y与x的几组对应值请直接写出m的值,m= ;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质 23(12分)如图,ACB与ECD都是等腰直角三角形,ACB=ECD=90,点D为AB边上的一点,(1)求证:ACEBCD;(2)若DE=13,BD=12,求线段AB的长24计算:2cos30+-()-2参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时
11、,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】14400=1.441故选C此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式【详解】当BC与x轴平行时,过B作BEx轴,过D作DFx轴,交BC于点G,
12、如图1所示等腰直角ABO的O点是坐标原点,A的坐标是(4,0),AO=4,BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,D坐标为(1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k0),将两点坐标代入得:,解得:则这条直线解析式为y=x+1故选D本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键3、C【解析】解:A小丽从家到达公园共用时间20分钟,正确;B公园离小丽家的距离为2000米,正确;C
13、小丽在便利店时间为1510=5分钟,错误;D便利店离小丽家的距离为1000米,正确故选C4、D【解析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴【详解】解:A在反比例函数图象上,可设A点坐标为(a,)A、B两点关于原点对称,B点坐标为(a,)又A、B两点在二次函数图象上,代入二次函数解析式可得:,解得:或,二次函数对称轴为直线x=故选D本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系5、C【解析】解:Ax10x2=x8,不符合
14、题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C6、C【解析】本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、矩形OABC的面积与|k|的关系,列出等式求出k值【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MGy轴于点G,作MNx轴于点N,则SONMG=|k|又M为矩形ABCO对角线的交点,S矩形ABCO=4SONMG=4|k|,函数图象在第一象限,k0,解得:k=1故选C本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考
15、的重要考点,同学们应高度关注7、C【解析】试题分析:此题等量关系为:2螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2800x,故C答案正确,考点:一元一次方程.8、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C9、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;当a0,b0时,y=ax+b的
16、图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合故选B此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四
17、象限10、A【解析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题解析:如
18、图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=68=112、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2【解析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b213、1.【解
19、析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故答案为1考点:平面展开最短路径问题14、十二【解析】首先根据内角度数计算出外角度数,再用外角和360除以外角度数即可【详解】一个正多边形的每个内角为150,它的外角为30,3603012,故答案为十二此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角15、【解析】连接,根据可得,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接
20、,是直径,是等腰直角三角形,本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键16、2【解析】连接PB、PC,根据二次函数的对称性可知OBPB,PCAC,从而判断出POB和ACP是等边三角形,再根据等边三角形的性质求解即可【详解】解:如图,连接PB、PC,由二次函数的性质,OBPB,PCAC,ODA是等边三角形,AODOAD60,POB和ACP是等边三角形,A(4,0),OA4,点B、C的纵坐标之和为:OBsin60+PCsin60=42,即两个二次函数的最大值之和等于2故答案为2本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出
21、等边三角形并利用等边三角形的知识求解是解题的关键三、解答题(共8题,共72分)17、12【解析】设矩形的长为x步,则宽为(60x)步,根据题意列出方程,求出方程的解即可得到结果【详解】解:设矩形的长为x步,则宽为(60x)步,依题意得:x(60x)864,整理得:x260x+8640,解得:x36或x24(不合题意,舍去),60x603624(步),362412(步),则该矩形的长比宽多12步此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键18、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用
22、二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程
23、,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:
24、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标19、,2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得【详解】解:原式,当a1时,原式2本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则20
25、、(1)5.3(2)见解析(3)2.5或6.9【解析】(1)(2)按照题意取点、画图、测量即可(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE故答案为2.5或6.9动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想21、(1)F,M;(1)n1或1;(3)m或 m【解析】(1)根据定义,认真审题即可解题,(1)在直角三角形P
26、HQ中勾股定理解题即可,(3)当D与线段AB相切于点T时,由sinOBA=,得DTDH1,进而求出m1=即可,当D过点A时,连接AD由勾股定理得DADH1即可解题.【详解】解:(1)OFOM1,点F、点M在上,F、M是O的“关联点”,故答案为F,M(1)如图1,过点Q作QHx轴于HPH1,QHn,PQ.由勾股定理得,PH1+QH1PQ1,即11+n1=()1,解得,n1或1(3)由yx+4,知A(3,0),B(0,4)可得AB5如图1(1),当D与线段AB相切于点T时,连接DT则DTAB,DTB90sinOBA=,可得DTDH1,m1=,如图1(1),当D过点A时,连接AD由勾股定理得DADH
27、1综合可得:m或 m本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.22、(1)x1;(2)2;(2)见解析;(4)在x1和x1上均单调递增;【解析】(1)根据分母非零即可得出x+10,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可【详解】解:(1)x+10,x1故答案为x1(2)当y=时,解得:x=2故答案为2(2)描点、连线画出图象如图所示(4)观察函数图象,发现:函数在x1和x1上均单调递增本题考查了反比例函数的性质以及函数图象,根据给
28、定数据描点、连线画出函数图象是解题的关键23、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC,CE=CD,ACB=ECD=90,得出BCD=ACE,根据SAS推出ACEBCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在RtAED中,由勾股定理求出DE即可【详解】证明:(3)如图,ACB与ECD都是等腰直角三角形,AC=BC,CE=CD,ACB=ECD=90,ACBACD=DCEACD,BCD=ACE,在BCD和ACE中,BC=AC,BCD=ACE,CD=CE,BCDACE(SAS);(3)由(3)知BCDACE,则DBC=EAC,AE=BD=33,CAD+DBC=90,EAC+CAD=90,即EAD=90,AE=33,ED=33,AD=5,AB=AD+BD=33+5=3本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3全等三角形的判定与性质;3等腰直角三角形24、5【解析】根据实数的计算,先把各数化简,再进行合并即可.【详解】原式=5此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。