ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:252.09KB ,
文档编号:8207643      下载积分:5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-8207643.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(现有分享)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(初中几何模型 专题15 阿氏圆中的双线段模型与最值问题(教师版).docx)为本站会员(现有分享)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

初中几何模型 专题15 阿氏圆中的双线段模型与最值问题(教师版).docx

1、专题3 阿氏圆中的双线段模型与最值问题【专题说明】 “阿氏圆”模型核心知识点是构造母子型相似,构造PABCAP 推出 PA2 = ,即:半径的平方=原有线段 构造线段。【模型展示】如下图,已知A、B两点,点P满足PA:PB=k(k1),则满足条件的所有的点P构成的图形为圆(1)角平分线定理:如图,在ABC中,AD是BAC的角平分线,则证明:,即(2)外角平分线定理:如图,在ABC中,外角CAE的角平分线AD交BC的延长线于点D,则证明:在BA延长线上取点E使得AE=AC,连接BD,则ACDAED(SAS),CD=ED且AD平分BDE,则,即接下来开始证明步骤:如图,PA:PB=k,作APB的角

2、平分线交AB于M点,根据角平分线定理,故M点为定点,即APB的角平分线交AB于定点;作APB外角平分线交直线AB于N点,根据外角平分线定理,故N点为定点,即APB外角平分线交直线AB于定点;又MPN=90,定边对定角,故P点轨迹是以MN为直径的圆【例题】1、如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值【解析】(1)由题意A(,0),B(

3、3,0),C(0,3),设抛物线的解析式为ya(x+3)(x),把C(0,3)代入得到a,抛物线的解析式为yx2x3(2)在RtAOC中,tanOAC,OAC60AD平分OAC,OAD30,ODOAtan301,D(0,1),直线AD的解析式为yx1,由题意P(m,m2m3),H(m,m1),F(m,0)FHPH,1m1(m2m3)解得m或(舍弃),当FHHP时,m的值为(3)如图,PF是对称轴,F(,0),H(,2)AHAE,EAO60,EOOA3,E(0,3)C(0,3),HC2,AH2FH4,QHCH1,在HA上取一点K,使得HK,此时K()HQ21,HKHA1,HQ2HKHA,QHKA

4、HQ,QHKAHQ,KQAQ,AQ+QEKQ+EQ,当E、Q、K共线时,AQ+QE的值最小,最小值2、如图1所示,O 的半径为 r,点 A、B 都在O 外,P 为O 上的动点, 已知 r=kOB.连接 PA、PB,则当“PA+kPB”的值最小时,P 点的位置如何确定?【解析】1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP、OB;2:计算连接线段OP、OB长度;3:计算两线段长度的比值;4:在OB上截取一点C,使得构建母子型相似:5:连接AC,与圆0交点为P,即AC线段长为PA+K*PB的最小值。本题的关键在于如何确定“kPB”的大小,(如图 2)在线段 OB上截取

5、 OC 使 OC=kr,则可说明BPO 与PCO 相似,即 kPB=PC。本题求“PA+kPB”的最小值转化为求“PA+PC”的最小值,即 A、P、C 三点共线时最小(如图 3),时AC线段长即所求最小值。3、如图,ACB=90,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D连接AD、BD、CD,则2AD+3BD的最小值是【分析】首先对问题作变式2AD+3BD=,故求最小值即可考虑到D点轨迹是圆,A是定点,且要求构造,条件已经足够明显当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,则在点D运动过程中,始终存在问题转化为DM+DB的最小值,直接连接BM,BM长度的3倍即为本题答案4、如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则的最大值为_【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值连接PD,对于PDM,PD-PMDM,故当D、M、P共线时,PD-PM=DM为最大值

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|