ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:535.57KB ,
文档编号:998844      下载积分:1.95 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-998844.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2020届高三数学(理)“大题精练”9.docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2020届高三数学(理)“大题精练”9.docx

1、 2020 届高三数学(理) “大题精练”9 17在平面四边形ABCD中, 3 ABC , 2 ADC ,2BC . (1)若ABC的面积为 3 3 2 ,求AC; (2)若 2 3AD , 3 ACBACD ,求tanACD. 18如图,等腰梯形ABCD中,/ABCD,1ADABBC, 2CD ,E为CD 中点,以AE为折痕把ADE折起,使点D到达点P的位置(P平面ABCE). ()证明:AEPB; ()若直线PB与平面ABCE所成的角为 4 ,求二面角APEC的余弦值. 19为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生 的必修课程.惠州市某中学计划在高一年级开设

2、游泳课程,为了解学生对游泳的兴趣, 某数学研究学习小组随机从该校高一年级学生中抽取了 100 人进行调查. (1)已知在被抽取的学生中高一 1班学生有 6 名,其中 3 名对游泳感兴趣,现在从这 6 名学生中随机抽取 3 人,求至少有 2 人对游泳感兴趣的概率; (2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级 以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一 8班和高一 9班获奖学生 中随机各抽取 2 人进行跟踪调查,记选中的 4 人中市级以上游泳比赛获奖的人数为, 求随机变量的分布列及数学期望. 班级 一 1 一 2 一 3 一 4 一 5 一 6 一 7

3、一 8 一 9 一 10 市级 比赛获奖人数 2 2 3 3 4 4 3 3 4 2 市级以上 比赛获奖人数 2 2 1 0 2 3 3 2 1 2 20在平面直角坐标系xOy中,已知过点4,0D的直线l与椭圆 2 2 :1 4 x Cy交于 不同的两点 11 ,A x y, 22 ,B xy,其中 12 0y y . (1)若 1 0 x ,求OAB的面积; (2)在 x 轴上是否存在定点 T,使得直线 TA、TB 与 y 轴围成的三角形始终为等腰三角 形. 21已知实数0a ,设函数 eaxf xax (1)求函数 f x的单调区间; (2)当 1 2 a 时,若对任意的1,x ,均有 2

4、 1 2 a f xx,求a的取值范围 注:e2.71828为自然对数的底数 22在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐 标系,曲线M的极坐标方程为2cos,若极坐标系内异于O的三点 1, A , 2, 6 B , 3123 ,0 6 ,C 都在曲线M上. (1)求证: 123 3; (2) 若过B,C两点直线的参数方程为 3 2 2 1 2 xt yt (t为参数) , 求四边形OBAC的 面积. 23已知函数( ) 24f xxx. (1)求不等式( )3f xx的解集; (2)若( )(1)f xk x对任意xR恒成立,求k的取值范围. 2020 届高三

5、数学(理) “大题精练”9(答案解析) 17在平面四边形ABCD中, 3 ABC , 2 ADC ,2BC . (1)若ABC的面积为 3 3 2 ,求AC; (2)若 2 3AD , 3 ACBACD ,求tanACD. 【解】 (1)在ABC中,因为2BC , 3 ABC , 13 3 sin 22 ABC SAB BCABC , 所以 33 3 22 AB ,解得:3AB . 在ABC中,由余弦定理得: 222 2?cos7ACABBCAB BCABC 所以7AC (2)设ACD,则 33 ACBACD 如图, 在Rt ACD中,因为2 3AD ,所以 2 3 sinsin AD AC

6、在ABC中, 3 BACACBABC , 由正弦定理,得 sinsin BCAC BACABC ,即 22 3 3 sin sin 3 2 所以2sinsin 3 所以 31 2cossinsin 22 ,即3cos2sin 所以 3 tan 2 ,即 3 tan 2 ACD 18如图,等腰梯形ABCD中,/ABCD,1ADABBC, 2CD ,E为CD 中点,以AE为折痕把ADE折起,使点D到达点P的位置(P平面ABCE). ()证明:AEPB; ()若直线PB与平面ABCE所成的角为 4 ,求二面角APEC的余弦值. 【解】 (I)证明:在等腰梯形 ABCD 中,连接 BD,交 AE 于点

7、 O, AB|CE,AB=CE,四边形 ABCE 为平行四边形,AE=BC=AD=DE, ADE 为等边三角形,在等腰梯形 ABCD 中, 3 CADE , 2 3 DABABC , 在等腰ADB中, 6 ADBABD 2 362 DBC ,即 BDBC, BDAE, 翻折后可得: OPAE,OBAE, 又,OPPOB OBPOB OPOBO平面平面, AEPOB 平面, ,PBPOBAEPB平面; (II)解:在平面 POB 内作 PQOB,垂足为 Q, 因为 AE平面 POB,AEPQ, 因为 OB平面 ABCE, AE平面 ABCE,AEOB=O PQ平面 ABCE,直线 PB 与平面

8、ABCE 夹角为 4 PBQ , 又因为 OP=OB,OPOB, O、Q 两点重合,即 OP平面 ABCE, 以 O 为原点,OE 为 x 轴,OB 为 y 轴,OP 为 z 轴,建立空间直角坐标系,由题意得, 各点坐标为 3131313 (0,0,),( ,0,0),(0,0),( ,0,),( ,0) 2222222 PECPEEC , 设平面 PCE 的一个法向量为 1 ( , , )nx y z, 则 1 1 13 0 0 22 , 0 13 0 22 xz PE n EC n xy 设3x ,则 y=-1,z=1, 1 ( 3,-1,1)n , 由题意得平面 PAE 的一个法向量 2

9、 (0,1,0)n , 设二面角 A-EP-C 为, 12 12 |15 |cos |= 5|5 n n nn . 易知二面角 A-EP-C 为钝角,所以 5 cos=- 5 . 19为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生 的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣, 某数学研究学习小组随机从该校高一年级学生中抽取了 100 人进行调查. (1)已知在被抽取的学生中高一 1班学生有 6 名,其中 3 名对游泳感兴趣,现在从这 6 名学生中随机抽取 3 人,求至少有 2 人对游泳感兴趣的概率; (2)该研究性学习小组在调查中发现,

10、对游泳感兴趣的学生中有部分曾在市级或市级 以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一 8班和高一 9班获奖学生 中随机各抽取 2 人进行跟踪调查,记选中的 4 人中市级以上游泳比赛获奖的人数为, 求随机变量的分布列及数学期望. 班级 一 1 一 2 一 3 一 4 一 5 一 6 一 7 一 8 一 9 一 10 市级 比赛获奖人数 2 2 3 3 4 4 3 3 4 2 市级以上 比赛获奖人数 2 2 1 0 2 3 3 2 1 2 【解】 (1) 记事件 i A从 6 名学生抽取的 3 人中恰好有 i 人有兴趣,i 0, 1, 2,3; 则 2 A与 3 A互斥, 故所求概率为

11、2323 P2P AAP AP A至少 人感兴趣 2130 3333 33 66 CCCC CC 101 202 ; (2)由题意知,随机变量的所有可能取值有 0,1,2,3; 22 34 22 55 CC9 P 0 CC50 11221 23434 22 55 CCCCC12 P 1 CC25 22111 24324 22 55 CCCCC3 P 2 CC10 21 24 22 55 CC1 P 3 CC25 则的分布列为: 0 1 2 3 p 9 50 12 25 3 10 1 25 数学期望为 9241526 E 0123 505050505 20在平面直角坐标系xOy中,已知过点4,0

12、D的直线l与椭圆 2 2 :1 4 x Cy交于 不同的两点 11 ,A x y, 22 ,B xy,其中 12 0y y . (1)若 1 0 x ,求OAB的面积; (2)在 x 轴上是否存在定点 T,使得直线 TA、TB 与 y 轴围成的三角形始终为等腰三角 形. 【解】 (1)当 1 0 x 时,代入椭圆方程可得A点坐标为0,1或0, 1 若A点坐标为0,1,此时直线 l:440 xy 联立 22 440 44 xy xy ,消 x 整理可得 2 5830yy 解得 1 1y 或 2 3 5 y ,故 B 8 3 , 5 5 所以OAB的面积为 184 1 255 0, 1A若 点坐标

13、为,由对称性知OAB的面积也是 4 5 , 综上可知,当 1 0 x 时,OAB的面积为 4 5 . (2)显然直线 l 的斜率不为 0,设直线 l:4xmy 联立 22 4 44 xmy xy ,消去 x 整理得 22 48120mymy 由 22 644 1240mm ,得 2 12m 则 12 2 8 4 m yy m , 12 2 12 4 y y m , 因为直线 TA、TB 与 y 轴围成的三角形始终为等腰三角形, 所以0 TATB kk 设,0T t,则 12211212 12 121112 24 TATB yxtyxtmy ytyyyy kk xtxtxtxtxtxt , 即

14、1212 222 848124 240 444 m tm tm my ytyy mmm , 解得1t . 故 x 轴上存在定点1,0T,使得直线 TA、TB 与 y 轴围成的三角形始终为等腰三角形 21已知实数0a ,设函数 eaxf xax (1)求函数 f x的单调区间; (2)当 1 2 a 时,若对任意的1,x ,均有 2 1 2 a f xx,求a的取值范围 注:e2.71828为自然对数的底数 【解】(1)由( )(1)=0 axax fxa eaa e,解得0 x 若0a ,则当 (0,)x时,( )0fx,故( )f x在(0,)内单调递增; 当 (,0)x 时,( )0fx

15、,故 ( )f x在(,0) 内单调递减 若0a ,则当 (0,)x时,( )0fx,故( )f x在(0,)内单调递增; 当 (,0)x 时,( )0fx ,故 ( )f x在(,0) 内单调递减 综上所述,( )f x在(,0)内单调递减,在(0,) 内单调递增 (2) 2 ( )(1) 2 a f xx,即 2 (1) 2 ax a ex 令0 x ,得1 2 a ,则 1 2 2 a 当1x 时,不等式 2 (1) 2 ax a ex显然成立, 当( 1,)x 时,两边取对数,即2ln(1)ln 2 a axx恒成立 令函数( )2ln(1)ln 2 a F xxax,即( )0F x

16、 在( 1,) 内恒成立 由 22(1) ( )=0 11 a x F xa xx ,得 2 11x a 故当 2 ( 1,1)x a 时,( )0F x ,( )F x单调递增; 当 2 (1+ )x a ,时,( )0F x ,( )F x单调递减. 因此 22 ( )(1)2ln2ln2ln 22 aa F xFaa aa 令函数( )2ln 2 a g aa,其中 1 2 2 a, 则 11 ( )10 a g a aa ,得1a , 故当 1 ( ,1) 2 a时,( )0g a,( )g a单调递减;当(1,2a时,( )0g a,( )g a单调递增 又 13 ( )ln40 2

17、2 g,(2)0g, 故当 1 2 2 a时,( )0g a 恒成立,因此( )0F x 恒成立, 即当 1 2 2 a时,对任意的 1,)x ,均有 2 ( )(1) 2 a f xx成立 22在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐 标系,曲线M的极坐标方程为2cos,若极坐标系内异于O的三点 1, A , 2, 6 B , 3123 ,0 6 ,C 都在曲线M上. (1)求证: 123 3; (2) 若过B,C两点直线的参数方程为 3 2 2 1 2 xt yt (t为参数) , 求四边形OBAC的 面积. 【解】 (1)由 12 2cos ,2cos,

18、6 3 2cos 6 ,则 23 2cos2cos 66 1 2 3cos3; (2)由曲线M的普通方程为: 22 20 xyx,联立直线BC的参数方程得: 2 30tt 解得 12 0,3tt;平面直角坐标为: 13 ,2,0 22 BC 则 23 1,2, 6 ;又得 1 3. 即四边形面积为 1213 113 3 sinsin 26264 OBAC S 为所求. 23已知函数( ) 24f xxx. (1)求不等式( )3f xx的解集; (2)若( )(1)f xk x对任意xR恒成立,求k的取值范围. 【解】 (1)当4x 时,原不等式等价于243xxx ,解得2x,所以4x ; 当2x时, 原不等式等价于243xxx , 解得 2 5 x , 所以此时不等式无解; 当24x 时,原不等式等价于243xxx ,解得2x,所以24x; 综上所述,不等式解集为2,. (2)由 1f xk x,得241xxk x 当1x 时,60恒成立,所以kR; 当1x 时, 241 31 3 33 11 1111 xxxx k xxxx 因为 3333 11112 1111xxxx 当且仅当 33 11| 0 11xx 即4x或2x时,等号成立 所以,2k 综上,k的取值范围是,2.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|