1、1 作业名称:PLC控制电动机正反转 指导老师:周 力_ 班级:机械2093 姓名:张悦 学号:3092101318 2 2012年5月 摘要 三相异步电动机一般釆用降压起动、能耗制动。针对传统的继电器一接触器 控制的降 压起动、能耗制动方法存在的不足,将OMRON公司的CPM2*型可编程序控 制器(PLC) 与接触器相结合,用于三相异步电动机的Y降压起动、能耗制动控 制,改进后的方法 克服了传统方法手工操作复杂且不够可靠的缺点,控制简单易 行。 关键词:三相异步电动机;PLC控制系统; Abstrcut the Three-phase asynchronous motor step-dow
2、n start, gen erally USES the braking energy. In traditional relay a contact device control step-down start braking energy, the shortcomings of the methods, the company will CPM2 * type OMRON PLC and contactor, combining for three-phase asynchronous motor step-down start a train of Y, braking energy
3、control,the improved method can overcome the disadvantage of traditional method manual operation complex and not reliable enough shortcomings,simple and easy to control. Key words: the three-phase asynchronous motor; PLC control system 3 前言 可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术 和通信技术 融为一体而发展起來的崭新的工业自动控
4、制装置。 目前PLC己基本 替代了传统的继电器控 制而广泛应用于工业控制的各个领域,PLC已跃居工业自 动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电 动机能作 正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改 变电动机的转向。 按下正转启动按钮SB1,电动机正转运行,且KM1KMY接 通。2s后KMY断开,KM接 通,即完成正转启动。按下停止按钮SB2,电动 机停止运行。按下反转启动按钮SB3,电动 机反转运行,且KM2,KMY接通。2s后KMY断开,KM接通,即完成反转启动。 设计三相异步电动机一般釆用降压起动、能耗制动。针对传统的继
5、电器一接 触器控制 的降压起动、能耗制动方法存在的不足,将OMRON公司的CPM2*型可编 程序控制器 (PLC)与接触器相结合,用于三相异步电动机的Y降压起动、能 耗制动控制,改进后 的方法克服了传统方法手工操作复杂且不够可靠的缺点,控 制简单易行。 三相交流异步电动机是应用最为广泛的电气设备,但它直接起动时产生的电 流击和转 矩冲击会对电网、电动机本身及其负载机械设备带来不利影响,因此常 常釆用降压起动。 一般有四种方式。即定子回路串电阻起动、Y降压起动、 自耦变压器起动和延边三角 形起动,其中Y降压起动简单经济,使用比较普 遍。传统的Y降压起动釆用继电 器一接触器控制,但由于其操作复杂、
6、可靠 性低等缺点,必将被PLC控制所取代。 4 目录 摘要2 前言3 第一章PLC概述 1.1PLC的产生5 1.2PLC的定义5 1.3PLC的特点及应用5 1.4PLC的基本结构7 第二章硬件设计 2.1、控制要求9 2.2、资源分配表9 2.3、I/O接线图9 2.4、时序图/顺序功能图/电气原理图10 2.5、软件设计(梯形图)11 2.6、调试过程12 第三章三相异步电动机控制设计 3.1电动机可逆运行控制电路13 3.2启动时就星型接法30秒后转为三角形运行直到停止 反之亦然15 3.3.三相异步电动机正反转PLC控制的梯形图、指令表17 3.4三相异步电动机正反转PLC控制的工作
7、原理18 3.5指令的介绍19 小结21 参考文献22 5 第一章 PLC 概述 1.1 PLC 的产生 1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制 器,并应用 于通用汽车公司的生产线上。当时叫可编程逻辑控制器PLC (Piogranmiable Logic Contioller),目的是用來取代继电器,以执行逻辑判断、 计时、计数等顺序控制功能。紧接 着,美国MODICON公司也开发出同名的控 制器,1971年,日本从美国引进了这项新技 术,很快研制成了日本第一台可编 程控制器。1973年,西欧国家也研制出他们的第一台可 编程控制器。 随着半导体技术,尤其是微处理
8、器和微型计算机技术的发展,到70年代中 期以后, 特别是进入80年代以來,PLC己广泛地使用16位其至32位微处理器 作为中央处理器, 输入输出模块和外围电路也都釆用了中、 大规模浜至超大规模 的集成电路, 使PLC在概念、 设计、性能价格比以及应用方面都有了新的突破。 这时的PLC己不仅仅是逻辑判断功能, 还同时具有数据处理、PLD调节和数据 通信功能,称之为可编程序控制器(Piogranmiable Contioller)更为合适,简称 为PC,但为了与个人计算机(Personal Computer)的简称PC相 区别,一般仍 将它简称为PLC (Progianunable Logic C
9、ontioller)。 1-2 PLC 的定义 “可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而 设计。 它采用了可编程序的存储器,用來在其内部存储和执行逻辑运算、顺序控 制、定时、计数 和算术运算等操作命令,并通过数字式和模拟式的输入和输出, 控制各种类型的机械或生 产过程。可编程控制器及其有关外围设备,都按易于与 工业系统联成一个整体、易于扩充 其功能的原则设计。” 可编程序控制器是应用面最广、功能强大、使用方便的通用工业控制装置,自研 制成功开 始使用以來,它己经成为了当代工业自动化的主要支柱之一。 1.3 PLC 的特点及应用 1 PI C1皓占 (1)编程简单,使用
10、方便 梯形图是使用得最多的可编程序控制器的编程语言,其符号与继电器电路原理图 相似。有 继电器电路基础的电气技术人员只要很短的时间就可以熟悉梯形图语 言,并用來编制用户 程序,梯形图语言形象直观,易学易懂,。 (2)控制灵活,程序可变,具有很好的柔性 可编程序控制器产品釆用模块化形式,配备有品种齐全的各种硬件装置供用户选 用,用户 能灵活方便地进行系统配置,组成不同功能、不同规模的系统。可编程 序控制器用软件功 能取代了继电器控制系统中大量的中间继电器、时间继电器、 计数器等器件,硬件配置确 定后,可以通过修改用户程序,不用改变硬件,方便 快速地适应工艺条件的变化,具有很 好的柔性。 6 (3
11、)功能强,扩充方便,性能价格比高 可编程序控制器内有成百上千个可供用户使用的编程元件,有很强的逻辑判断、数据处理、 PID调节和数据通信功能,可以实现非常复杂的控制功能。如果元件 不够,只要加上需要 的扩展单元即可,扩充非常方便。与相同功能的继电器系统 相比,具有很高的性能价格比。 (4)控制系统设计及施工的工作量少,维修方便 可编程序控制器的配线与其它控制系统的配线比较少得多,故可以省下大量的配 线,减少 大量的安装接线时间,开关柜体积缩小,节省大量的费用。可编程序控 制器有较强的带负 载能力、可以直接驱动一般的电磁阀和交流接触器。一般可用 接线端子连接外部接线。可 编程序控制器的故障率很低
12、,且有完善的自诊断和显 示功能,便于迅速地排除故障。 (5)可靠性高,抗干扰能力强 可编程序控制器是为现场工作设计的,采取了一系列硬件和软件抗干扰措施,硬 件措施如 屏蔽、滤波、电源调整与保护、隔离、后备电池等,例如,西门子公司S7-200系列PLC 内部EEPROM中,储存用户原程序和预设值在一个较长时间段 (190小时),所有中间数据可以通过一个超级电容器保持,如果选配电池模块, 可以确 保停电后中间数据能保存200天。软件措施如故障检测、信息保护和恢复、 警戒时钟,加 强对程序的检测和校验。从而提高了系统抗干扰能力,平均无故障 时间达到数万小时以上, 可以直接用于有强烈干扰的工业生产现场
13、,可编程序控 制器己被广大用户公认为最可靠的 工业控制设备之一。 (6)体积小、重量轻、能耗低,是“机电一体化”特有的产品。 2) PLC应用 目前,可编程序控制器己经广泛地应用在各个工业部门。随着其性能价格比的不 断提高, 应用范围还在不断扩大,主要有以下几个方面: (1)逻辑控制 可编程序控制器具有“与”、“或”、“非”等逻辑运算的能力,可以实现逻辑运算, 用触 点和电路的串、并联,代替继电器进行组合逻辑控制,定时控制与顺序逻辑 控制。数字量 逻辑控制可以用于单台设备,也可以用于自动生产线,其应用领域 最为普及,包括微电子、 家电行业也有广泛的应用。 (2)运动控制 可编程序控制器使用专用
14、的运动控制模块,或灵活运用指令,使运动控制与顺序 控制功能 有机地结合在一起。随着变频器、电动机起动器的普遍使用,可编程序 控制器可以与变频 器结合,运动控制功能更为强大,并广泛地用于各种机械,如 金属切削机床、装配机械、 机器人、电梯等场合。 (3)过程控制 可编程序控制器可以接收温度、压力、流量等连续变化的模拟量,通过模拟量I/O模块, 实现模拟量(Analog)和数字量(Digital)之间的A/D转换和D/A转换,并对被控模拟 量实行闭环PID(比例-积分-微分)控制。现代的大中型可编程序 控制器一般都有PID闭 环控制功能,此功能己经广泛地应用于工业生产、加热炉、 锅炉等设备,以及轻
15、工、化工、 机械、冶金、电力、建材等行业。 (4)数据处理 可编程序控制器具有数学运算、数据传送、转换、排序和查表、位操作等功能, 可以完成 数据的釆集、分析和处理。这些数据可以是运算的中间参考值,也可以 7 通过通信功能传送到别的智能装置,或者将它们保存、打印。数据处理一般用于 大型控制 系统,如无人柔性制造系统,也可以用于过程控制系统,如造纸、冶金、 食品工业中的一 些大型控制系统。 (5)构建网络控制 可编程序控制器的通信包括主机与远程I/O之间的通信、多台可编程序控制器之 间的通信、 可编程序控制器和其他智能控制设备(如计算机、变频器)之间的通信。 可编程序控制器 与其他智能控制设备一
16、起,可以组成“集中管理、分散控制”的 分布式控制系统。 当然,并非所有的可编程序控制器都具有上述功能,用户应根据系统的需要选择 可编程序 控制器,这样既能完成控制任务,又可节省资金。 1-4 PLC 的基本结构 可编程序控制器简称为PLC (Progranmiable Logic Contioller)主要由CPU模块、 输入模块、输出模块和编程器组成。(如下图一所示) 编程器 图一PLC控制系统示意图 可编程序控制器实际上是一种工业控制计算机,它的硬件结构与一般微机控 制系统相 似,其至与之无异。可编程序控制器主要由CPU(中央处理单元)、存 储器(RAM和 EPROM)、输入/输出模块(简
17、称I/O模块)、编程器和电源五大 部分组成。 1)CPU模块 CPU模块乂叫中央处理单元或控制器,它主要由微机处理器(CPU)和存 储器组成。 CPU的作用类似于人类的大脑和心脏。 它采用扫描方式工作, 每一 次扫描要完成以下工作: (1)输入处理:将现场的开关量输入信号和数据分别读入输入映像寄存器 和数据 寄存器。 (2)程序执行:逐条读入和解释用户程序,产生相应的控制信号去控制有 关的电 路,完成数据的存取、传送和处理工作,并根据运算结果更新各有关寄存 器的内容。 (3)输出处理:将输出映像寄存器的内容送给输出模块,去控制外部负载。 2)I/O模块 I/O模块是系统的眼、耳、手、脚,是联系
18、外部现场和CPU模块的桥梁。输 入模块 用來接收和采集输入信号。输入信号有两类:一类是从按钮、选择开关、 数字开关、限位 开关、接收开关、关电开关、压力继电器等來的开关量输入信号; 另一类是由电位器、热电 偶、测速发电机、各种变送器提供的连续变化的模拟量 输入信号。 可编程序控制器通过输出模块控制接触器、电磁阀、电磁铁、调节阀、调速 装置等执 按ill 逸择丿关 限位丿咲 输入模块 电磁阀 指示灯 电源 8 行器,可编程序控制器控制的另一类外部负载是指示灯、数字显示装置 和报警装置等。 CPU模块的工作电压一般是5V,而可编程序控制器的输入/输出信号电压一 般较高, 如直流24V和交流220V
19、o从外部引入的尖蜂电压和干扰噪声可能损坏CPU模块中的元器 件,或使可编程序控制器不能正常工作,所以CPU模块不能 直接与外部输入/输出装置相 连。I/O模块除了传递信号外,还有电平转换与噪声 隔离的作用。 3)编程器 编程器除了用來输入和编辑程序外,还可以用来监视可编程序控制器运行时 梯形图中 各种编程元件的工作状态。 编程器可以永久地连续在可编程序控制器上,将它取下來后可编程序控制器 也可以运 行。一般只在程序输入、调试阶段和检修时使用,一台编程器可供多台 可编程序控制器公 用。 4)开关量I/O模块 开关量模块的输入输出信号仅有接通和断开两种状态。 电压等级有直流5V, 12V, 24V
20、, 48V和交流110V, 220V等。输入输出电压的允许范围很宽,如某 交流220V输入模块的 允许低电压为070V,高电压为70256V,频率为4763HZ。 各I/O点的通/断状态用发光二极管或其它元件显示在面板上,外部I/O接线 一般接 在模块的接线端子上,某些模块使用可拆除的插座型端子板,在不拆去端 子的外部连线的 情况下,可以迅速地更换模。开关量I/O模块可能4, 8, 16, 32, 64点。 9 第二章硬件设计 2.K 控制要求 对于较大容量的交流电动机,启动是可釆用Y-降压启动。电动机开始启 动是形连接, 延时一定时间后,自动切换到Y形连接运行。丫-转换用两个接 触器切换完成
21、,由PLC 输出点控制。正转时按下反转开关无反应,按下停止按钮, 电动机停止转动,按下反转按钮, 启动Y形连接。此时按下正转按钮系统无反应。 2 2、资源分配表 输入设备PLC输入继电 器 输出设备 PLC输出继电器 代号功能 代号 功能 SB1 正传按钮10.0KM1主接触器Q0.0 SB2停止按钮 10.1 KM2Y接触器Q0.2 SB3反转按钮10.3 FR过载保护 10.2 KM3接触器Q0.1 2 3、I/O 接线 由源 KMl KM? SB1 SB2 FR 2 4、时序图/顺序功能图/电气原理图 10 /- 厂 厂 Q _ L F 2 5、软件设计(梯形图) 冋络1网络标题 网络注
22、释 Q0.0 网络2 T3710.1 I0.0I0.2 Q0.2 11 2 6、调试过程 首先进行编写程序,下载,然后再接线,然后在打开开关,进行调试,看是否能 达到要求, 如果出现问题,在检查接线问题,如果没有问题在看程序,是否正确, 如果没有达到要求在进 行调试,当按下按钮SB1,形接通,5S后接通,Y形 断开,再按下SB1无反应。按下 按钮SB3, Y形形断开。按下SB2, Y型接通; 再按下SB1无反应。 系统调试分儿种情况: 硬件调试:接通电源,检查可编程序控制器能否正常工作,接头是否接触良好。 软件调试: 按要求输入梯形图,检查后编译通过,在线工作后把程序写入可编程 序控制器的程序
23、存储区。 运行调试:在硬件调试和软件调试正确的基础上,使PLC进入运行状态,观察运 行情况, 看是否能够实现正反转、快速、中速、慢速、单步、定步控制。 根据以上调试情况,此电机控制系统设计符合控制要求。 通过调试找出问题的所在,相应的修改程序。在编程过程中难免会有不足之 处,因此通过调试,再修改程序可以更好实现相应的功能。例如原來我用P01、P02、P03 来控制电机运行的快速、中速、慢速,发现按钮不能自锁,后來通过20.00、20. 01 20. 02 三个中间继电器,并补充了一些程序实现了自锁功能。 13 第三章三相异步电动机控制设计 为了使电动机能够正转和反转,可采用两只接触器KM1、K
24、M2换接电动机三相 电源的相 序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为 了防止这种事故, 在电路中应采取可靠的互锁,上图为釆用按钮和接触器双重互 锁的电动机正、反两方向运 行的控制电路。 图三电动机可逆运行控制电路 线路分析如下: (1)正向启动: 1、 合上空气开关QF接通三相电源 2、 按下正向启动按钮SB3, KM1通电吸合并自锁,主触头闭合接通电动机, 电动机 这时的相序是LI、L2、L3,即正向运行。 (2)反向启动: 1、 合上空气开关QF接通三相电源 2、 按下反向启动按钮SB2, KM2通电吸合并通过辅助触点自锁,常开主触 头闭合 换接了电动机三相的电源相
25、序,这时电动机的相序是L3、L2、L1,即反 向运行。 (3)互锁环节:具有禁止功能在线路中起安全保护作用。 1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路 串入KM1的 常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助常闭 触点断开了KM2线圈 回路,若使KM1得电吸合,必须先使KM2断电释放,其 电动机可逆运行控制电路 14 辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路 环节称为 互锁环节。 2、按钮互锁:在电路中釆用了控制按钮操作的正反传控制电路,按钮SB2、SB3都 具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM
26、2线圈 回路连接。例如 按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接 触器KM1线圈回路串联。 按钮SB3的常开触点与接触器KM1线圈串联,而常 闭触点压KM2线圈回路串联。这样 当按下SB2时只能有接触器KM2的线圈可 以通电而KM1断电,按下SB3时只能有接触 器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不 能通电。这样就起到了 互锁的作用。 (4)电动机的过载保护由热继电器FR完成。 电动机可逆运行控制电路的调试 1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调 换电动机 的相序,接线时应使接触器的上口接线保持一致,在接
27、触器的下口调相。 2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的 接线断开。 (5)故障现象预处理; 1、不启动;原因之一,检查控制保险FU是否断路,热继电器FR接点是否 用错或 接触不良,SB1按钮的常闭接点是否不良。原因之二按纽互锁的接线有误。 2、起动时接触器“叭哒”就不吸了;这是因为接触器的常闭接点互锁接线 有错,将 互锁接点接成了自己锁自己了,起动时常闭接点是通的接触器线圈的电 吸合,接触器吸合 后常闭接点乂断开,接触器线圈乂断电释放,释放常闭接点乂 接通接触器乂吸合,接点乂 断开,所以会出现“叭哒”接触器不吸合的现象。 3、不能够自锁一抬手接触器就断开,这是因为
28、自锁接点接线有误。 / 1 1丿 WI IIT 士 图四 15 3 2 启动时就星型接法 30 秒后转为三角形运行直到停止反之亦然 1.用PLC实现Y-起动的可逆运行电动机控制电路。如图1所示,其控制 要求如 下: (1)按下正转按钮SB1,电动机以Y-方式正向起动,Y形联结运行30s后转换为 形运行。按下停止按钮SB3,电动机停止运行。 (2)按下反转按钮SB2,电动机以Y-方式反向起动,Y形联结运行30s后转换为 形运行。按下停止按钮SB3,电动机停止运行。 图五Y-起动的可逆运行电动机控制电路 试列出I/O分配表、编写梯形图并上机运行调试。 2.用PLC实现电动机反接制动控制电路。如图六
29、所示,其工作原理如下: (1)按下正向起动按钮SB2,运行过程如下:中间继电器KA1线圈得电,KA1常 开触点闭合并自锁,同时正向接触器KM1得电,主触点闭合,电动机正 向起动;在刚起 动时未达到速度继电器KV的动作转速,常开触点KS-Z未闭合, 中间继电器KA3断电, KM3也处于断电状态,因而电阻R串在电路中限制起动 电流;当转速升高后,速度继电 器动作,常开触点KS-Z未闭合,KM3线圈得电, 其主触点短接电阻R,电动机起动结束。 (2)按下停止按钮SB1,运行过程如下:中间继电器KA1线圈失电,KA1常开触 点断开接触器KM3线圈电路,电阻R再次串在电动机定子电路限制电流; 同时,KM
30、1线 圈失电,切断电动机三相电源;此时电动机转速仍然较高,常开 触点KS-Z仍闭合,中间 继电器KA3线圈也还处于得电状态,在KM1线圈失电 的同时乂使得KM2线圈得电,主 触点将电动机电源反接,电动机反接制动,定 子电路一直串联有电阻R以限制制动电流; 当转速接近零时,速度继电器常开 触点KS-Z断开,KA3和KM2线圈失电,制动过程结 束,电动机停转。 16 (3)按下反向起动按钮SE3,运行过程如下: 如果正处于正向运行状态,反向按钮SB3 同时切断KA1和KM1线圈;然后中间继电器KA2线圈得电,KA2常开触点闭合并实现自 锁,同时正向接触器KM2得电,主触点闭合,电动机反 向起动;由
31、于原來电动机处于正 向运行,所以首先制动。制动结束后,反向速度 在未达到速度继电器KV的动作转速时, 常开触点KS-F未闭合,中间继电器KA4断电,KM3也处于断电状态,因而电阻R仍串 在电路中限制起动电流; 当反向 转速升高后, 速度继电器动作, 常开触点KS-F闭合,KM3 线圈得电,其主触点 短接电阻R,电动机反向起动结束。反向制动过程与正向制动过程类 似。 图六反接制动控制电路 (4) .用PLC实现图七所示的三相绕线感应电动机串电阻继电器接触器控制 电路。试列出I/O 分配表、编写梯形图并上机运行调试。 KM3 17 图七三相绕线感应电动机串电阻起动电路 (a)主电路(b)控制电路
32、3.3.三相异步电动机正反转 PLC 控制的梯形图、指令表 三相异步电动机正反转PLC控制I/O端口分配表 输入电器输入点输出电器输出点 停止按钮SB1XI24V正转接触器KA1Y1 正转按钮SB2X224V反转接触器KA2Y2 反转按钮SB3X3380V正转接触器KM1 热继电器触点FR1X0380V反转接触器KM2 热继电器触点FR2X4 三相异步电动机正反转PLC控制的梯形图、指令表 A B C D 烁 1 YW 18 b)棉形蛰 19 步序助记符操作数 A 0 1OR 2AMI 3 Y2- 4OUT VI- 5LD 6OR 7Xia 8 Al-TIT14J 9OUT 10 C) )扌旨
33、令语句表 4 图八三相异步电动机正反转PLC控制 3.4 三相异步电动机正反转 PLC 控制的工作原理 图1-3和图l-4a LO接线图中,SB为停机按钮,SB1为正转启动按钮,SB2为反转启动按钮, KM1为正转控制接触器,KM2为反转控制接触器。继电控制 电路的工作分析不再赘述,PLC控制 的工作过程,参照其I/O接线图和梯形图, 分析如下: (1)正转启动过程 点动SB1-X2吸合一A区X2闭合一Y1吸合一一Y1输出触点闭合-*KM1吸合电动机正转 B区Y1闭合一自锁Yl-C区Y1分断一互锁Y2 (2)停机过程 点动SB-X1吸合一A区XI分断一Y1释放一各器件复位一电动机停止 反转启动
34、与停机过程, 请读者自行分析。 图l-4c的指令语句表,是用英文助记符描述梯形图中各部件的连接关系和 编程指令。常用助记 符指令见表l-4o 20 3.5 指令的介绍 表1 4 PLC编程常用指令 分类助记符英文指令用途梯形图 常开触点 连接指令 LDLoad 在左母线或副母线上加载常开触点 ANDAnd在电路右方串联常开触点HI 1- OROr 向上方电路并联常开触点 打 派生 连接指令 XXI Inverse 连接常闭触点 xxxPPulse连接上升沿瞬间通断的边沿触点 TI- xxxFFall连接下降沿瞬间通断的边沿触点 -UH 触点块 连接 指令 ANBAnd block 在电路右h串
35、联触点块 ORBOr block 向上方电路并联触点块 TIII|- T P 驱动指令OUTOutput由触点的逻辑运算结果驱动线圈 交替驱动ALTALTeration 边沿触点控制该指令使继电器交替 吸放 置位与 复位指令 SETSetup使继电器置位吸合并保持 RSTReset使置位吸合的继电器释放复位 区间复位ZRST使指定区间内的多个继电释放复位 步进控制 指令 STLSetup line 加载置位的步进接点,形成副母线4B-r RETReset撤销副母线,恢复到左母线 传送和 转 换指令 MOVMovability 将元件中的BIN码(二进制数据)传 送到若干组其他元件(每组4个)
36、BCD Binary Code Decimal 将元件中的BIN码转换成BCD码传 送到若干组其他元件(每组4个) 注:1.派生连接指令的XX系指连接指令的两位助记符简写;XXX系指连接 指令的两位或者 21 三位助记符全写。 2.基本指令语句格式: 助记符元件参数。如OUTT1K50,意为驱 动5s计时器 T1。 3.功能指令语句格式: 助记符源元件目标元件。如BCDC1K1Y0,意为将C1 中的数据转换成BCD码,传送到以Y0为首的1组4个元件中。 22 小结 本次作业论文能顺利完成,是因为在设计当中我得到了许多人的帮助以及查 找了很多的资料。 虽然中间有着不完美,但却是我自己不断地查阅资
37、料、思考 和动手的结果。经过几天的忙碌和工作, 本次作业己经接近尾声,作为一个本科 学生的作业论文,由于经验的匮乏,难免有许多考虑不周全 的地方,如果没有导 师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象 的。 在完成论文的过程中充分应用到了再课堂上老师讲授的知识。我们的老师是 一个非常慈祥的老 人,在他的身上看到了自己亲人的身影,感到很亲切,我们班 的同学好多都这样感觉的。而且老师 的课很有意思,听着听着不知不觉三节课就 过去了。特别是老师提问,那是一个惊心动魄呀,我们 都是打起十二分的精神迎 战周老师的魔咒。不过我还是比较幸运的,每次问题都回答得大差不差。 最让人 难
38、受的就是老师讲着讲着课提问了,当你还在思考时不小心和老师的眼睛碰撞 了,然后他就 喊“那个,站起来讲一下”。我喜欢坐在前排,这样的事情发生在 我身上好几次了,后來搞得我都 不敢看老师了。 这个老师我们很喜欢,和蔼可亲而且只是渊傅,在此祝老师身体健康长命百 岁! 23 参考文献 1凌云.PS7219显示驱动器及其在PLC中的应用.湖南冶金职业技术学院报,2003 2张桂香.电气控制与PLC应用.化学工业出版社,2003 3王成福.PLC在多路温度釆集显示系统中的应用.电子技术,2003 3张桂苓.浅谈现代PLC的优势特点.电子技术,2003 5李丹,杨素英.可编程序控制器通用数据采集方法的研究.
39、大连理工学报,2001 6齐晓慧,董海瑞.自动控制原理虚拟实验研究J.中国教育教学杂志,2006 7刘晓燕.自动控制原理课程教改探索J.重庆职业技术学院学报,2006 8罗建军.MATLAB教程M.北京:电子工业出版社,2005 9龚其春,叶骞.新型气体泄漏超声检测系统的研究与设计J.电子技术应 2005 10邱水红,甘仲民自适应数字波束形成的抗干扰新技术J.电信快报,1999 11朱近康.面向新一代移动通信的智能移动通信技术J.电子学报,1999 12谢显中.第三代移动通信系统技术与实现M.北京:电子工业出版社,2004 13肖杰,荆雷.智能天线在移动通信中的应用J.邮电设计技术,2004 14李钊,韦玮.第四代移动通信中的多天线技术J.移动通信,2005