1、2020 年云南省年云南省中考中考数学试题卷数学试题卷 一、填空题(本大题共一、填空题(本大题共 6 小题)小题) 1.中国是最早采用正负数表示相反意义的量的国家某仓库运进面粉 7 吨,记为7吨,那么运出面粉 8 吨 应记为_吨 2.如图,直线c与直线a、b都相交若ab,1 54 ,则2 _度 3.使 x2 有意义的 x 的取值范围是_ 4.已知一个反比例函数的图象经过点3,1,若该反比例函数的图象也经过点1,m,则m_ 5.若关于x的一元二次方程 2 20 xxc 有两个相等的实数根,则c的值是_ 6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA EC若6AB ,2 10A
2、C , 则DE的长是_ 二、选择题(本大题共二、选择题(本大题共 8 小题,每小题只有一个正确选项)小题,每小题只有一个正确选项) 7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽, 1500000 人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自 2020 年 5 月 11 日云南日报) 1500000 这个数用科学记数法表示为() A. 6 15 10 B. 5 1.5 10 C. 6 1.5 10 D. 7 1.5 10 8.下列几何体中,主视图是长方形的是() A.B.C.D. 9.下列运算正确的是() A. 42 B. 1 1 2
3、2 C. 3 3 39aa D. 633( 0)aaa a 10.下列说法正确的是() A. 为了解三名学生的视力情况,采用抽样调查 B. 任意画一个三角形,其内角和是360是必然事件 C. 甲、乙两名射击运动员 10 次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为 2 S甲、 2 乙 S若 =xx 甲乙 , 2 =0.4S甲, 2 =2S乙,则甲的成绩比乙的稳定 D. 一个抽奖活动中,中奖概率为 1 20 ,表示抽奖 20 次就有 1 次中奖 11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点,则 DEO与BCD的面 积的比等于() A. 1 2 B. 1
4、 4 C. 1 6 D. 1 8 12.按一定规律排列的单项式:a,2a,4a,8a,16a,32a,第n个单项式是( ) A. 1 2 n a B.2 n aC. 1 2na D.2na 13.如图,正方形ABCD的边长为 4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部分, 点E在对角线AC上) 若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是() A.2B. 1C. 2 2 D. 1 2 14.若整数a使关于x的不等式组 111 23 41 xx xax ,有且只有 45 个整数解,且使关于y的方程 2260 1 11 ya yy 的解为非正数,则a的值为()
5、 A.61或58B.61或59C.60或59D.61或60或59 三、解答题(本大题共三、解答题(本大题共 9 小题)小题) 15.先化简,再求值: 22 2 442 42 xxxx xx ,其中 1 2 x 16.如图,已知ADBC,BDAC求证: ADBBCA 17.某公司员工的月工资如下: 员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 月工资/元700044002400200019001800180018001200 经理、职员C、职员D从不同的角度描述了该公司员工的收入情况设该公司员工的月工资数据(见上述 表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列
6、问题: (1)k _,m_,n _; (2)上月一个员工辞职了,从本月开始,停发该员工工资若本月该公司剩下的 8 名员工的月工资不变, 但这 8 名员工的月工资数据(单位:元)的平均数比原 9 名员工的月工资数据(见上述表格)的平均数减 小了你认为辞职的那名员工可能是_ 18.某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活 动,绿化升级改造了总面积为 360 万平方米的区域实际施工中,由于采用了新技术,实际平均每年绿化 升级改造的面积是原计划平均每年绿化升级改造的面积的 2 倍,所以比原计划提前 4 年完成了上述绿化升 级改造任务实际平均每年绿化升级
7、改造的面积是多少万平方米? 19.甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双 版纳三个城市中的一个城市旅游假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市 中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P (1)直接写出甲家庭选择到大理旅游的概率; (2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值 20.如图,AB为O 的直径,C为O 上一点,AD CE,垂足为D,AC平分DAB (1)求证:CE是O 的切线; (2)若4AD, 4 cos 5 CAB,求AB的长 21.众
8、志成城抗疫情, 全国人民在行动 某公司决定安排大、 小货车共 20 辆, 运送 260 吨物资到A地和B地, 支援当地抗击疫情 每辆大货车装 15 吨物资, 每辆小货车装 10 吨物资, 这 20 辆货车恰好装完这批物资 已 知这两种货车的运费如下表: 目的地 车型 A地(元/辆)B地(元/辆) 大货车9001000 小货车500700 现安排上述装好物资的 20 辆货车 (每辆大货车装 15 吨物资, 每辆小货车装 10 吨物资) 中的 10 辆前往A地, 其余前往B地,设前往A地的大货车有x辆,这 20 辆货车的总运费为y元 (1)这 20 辆货车中,大货车、小货车各有多少辆? (2)求y
9、与x的函数解析式,并直接写出x的取值范围; (3)若运往A地的物资不少于 140 吨,求总运费y的最小值 22.如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE AB,垂足为 E,点F在AD的延长线上,CFAD,垂足为F (1)若60BAD,求证:四边形CEHF是菱形; (2)若4CE ,ACE的面积为 16,求菱形ABCD的面积 23.抛物线 2 yxbxc与x轴交于A、B两点,与y轴交于点C,点A的坐标为1,0,点C的坐标 为0, 3点P为抛物线 2 yxbxc上的一个动点过点P作PDx轴于点D,交直线BC于点E (1)求b、c的值; (2)设点F在抛物线 2 yxbxc的对称轴上,当ACF的周长最小时,直接写出点F的坐标; (3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的 5 倍?若存在,求 出点P所有的坐标;若不存在,请说明理由