1、小学六年级奥数练习及答案解析十讲小学六年级奥数练习及答案解析十讲 小学六年级奥数题及答案 1.某市举行小学数学竞赛,结果不低于 80 分的人数比 80 分以下的人数的 4 倍还多 2 人,及 格的人数比不低于 80 分的人数多 22 人,恰是不及格人数的 6 倍,求参赛的总人数? 解: 设不低于 80 分的为 A 人,则 80 分以下的人数是(A-2)/4,及格的就是 A+22,不及格的就 是 A+(A-2)/4-(A+22)=(A-90)/4,而 6*(A-90)/4=A+22,则 A=314,80 分以下的人数 是(A-2)/4,也即是 78,参赛的总人数 314+78=392 2.电影票
2、原价每张若干元,现在每张降低 3 元出售,观众增加一半,收入增加五分之一,一张电 影票原价多少元? 解:设一张电影票价 x 元 (x-3)(1+1/2)=(1+1/5)x (1+1/5)x 这一步是什么意思,为什么这么做 (x-3)现在电影票的单价(1+1/2)假如原来观众总数为整体 1,则现在的观众人数为 (1+2/1) 左边算式求出了总收入 (1+1/5)x其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体 1,则原来应收入 1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1) ,减缩后得到(1+1/5x) 如此计算后得到总收入,使方程左右相等 3.甲乙在银行存款共
3、9600 元,如果两人分别取出自己存款的 40%,再从甲存款中提 120 元给 乙。这时两人钱相等,求 乙的存款 答案 取 40后,存款有 9600(140)5760(元) 这时,乙有:576021203000(元) 乙原来有:3000(140)5000(元) 4.由奶糖和巧克力糖混合成一堆糖,如果增加 10 颗奶糖后,巧克力糖占总数的 60%。再增加 30 颗巧克力糖后, 巧克力糖占总数的 75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗? 答案 加 10 颗奶糖,巧克力占总数的 60%,说明此时奶糖占 40%, 巧克力是奶糖的 60/40=1。5 倍 再增加 30 颗巧克力,巧克力占 7
4、5%,奶糖占 25%,巧克力是奶糖的 3 倍 增加了 3-1.5=1.5 倍,说明 30 颗占 1.5 倍 奶糖=30/1.5=20 颗 巧克力=1.5*20=30 颗 奶糖=20-10=10 颗 5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少 1/4!”小亮说:“你要是 能给我你的 1/6,我就比你多 2 个了。”小明原有玻璃球多少个? 答案 小明说:“你有球的个数比我少 1/4!”,则想成小明的球的个数为 4 份,则小亮的球的个 数为 3 份 4*1/62/3 (小明要给小亮 2/3 份玻璃球) 小明还剩:4-2/33 又 1/3(份) 小亮现有:3+2/33 又 2/3(份)
5、 这多出来的 1/3 份对应的量为 2,则一份里有:3*26(个) 小明原有 4 份玻璃球,又知每份玻璃球为 6 个,则小明原有玻璃球 4*624(个) 6.搬运一个仓库的货物,甲需要 10 小时,乙需要 12 小时,丙需要 15 小时.有同样的仓库 A 和 B,甲在 A 仓库、乙在 B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙 搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间? 解:设搬运一个仓库的货物的工作量是 1.现在相当于三人共同完成工作量 2,所需时间是 答:丙帮助甲搬运 3 小时,帮助乙搬运 5 小时 解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计
6、算当然也可以整数化,设搬运 一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运 4 三人共同搬完,需要 602(6+5+4)=8(小时) 甲需丙帮助搬运 (60-68)4=3(小时) 乙需丙帮助搬运 (60-58)4=5(小时) 7.一件工作,若由甲单独做 72 天完成,现在甲做 1 天后,乙加入一起工作,合作 2 天后,丙也一 起工作,三人再一起工作 4 天,完成全部工作的 1/3,又过了 8 天,完成了全部工作的 5/6,若余 下的工作由丙单独完成,还需要几天? 答案 甲乙丙 3 人 8 天完成 :5/6-1/3=1/2 甲乙丙 3 人每天完成 :1/28=1/1
7、6, 甲乙丙 3 人 4 天完成 :1/164=1/4 则甲做一天后乙做 2 天要做 :1/3-1/4=1/12 那么乙一天做 :1/12-1/723/2=1/48 则丙一天做 :1/16-1/72-1/48=1/36 则余下的由丙做要 :1-5/61/36=6 天 答:还需要 6 天 8.股票交易中, 每买进或卖出一种股票都必须按成交易额的 1和 2分别交纳印花税和佣金 (通常所说的手续费) 。老王 10 月 8 日以股票 10.65 元的价格买进一种科技股票 3000 股,6 月 26 日以每月 13.86 元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱? 答案 10.65*1
8、=0.1065(元) 10.65*2=0.213(元) 10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元) 13.86*1=0.1386(元) 13.86*2=0.2772(元) 0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元) 14.2758-10.9695=3.3063(元) 答:老王卖出这种股票一共赚了 3.3063 元. 9.某书店老板去图书批发市场购买某种图书,第一次购书用 100 元,按该书定价 2.8 元出售, 很快售完。第二次购书时,每本的批发价比第一次增多了 0.5 元,用去 150 元,所购
9、数量比 第一次多 10 本,当这批书售出 4/5 时出现滞销,便以定价的 5 折售完剩余图书。试问该老板 第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少 答案 ( 100+40 ) /2.8=50 本100/50=2150/(2+0.5 ) =60 本60*80%=48 本 48*2.8+2.8*50*12-150=1.2盈利 1.2 元对我有帮助 一件工程原计划 40 人做,15 天完成.如果要提前 3 天完成,需要增加多少人 解:设需要增加 x 人 (40+x)(15-3)=40*15 x=10 所以需要增加 10 人 10.仓库有一批货物,运走的货物与剩下的货物的质量比为 2:7.
10、如果又运走 64 吨,那么剩 下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨? 解:第 1 次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360 吨。 答:原仓库有 360 吨货物。 11.育才小学原来体育达标人数与未达标人数比是 3:5,后来又有 60 名同学达标,这时达标 人数是未达标人数的 9/11,育才小学共有学生多少人? 答案 原来达标人数占总人数的 3(35)3/8 现在达标人数占总人数的 9/11(19/11)9/20 育才小学共有学生 60(9/203/8)800 人 12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的 1/3,等于小
11、张的 1/8,而且小张比小王多做了 72 道,小王,小张,小李各做多少道? 答案 设小王做了 a 道,小李做了 b 道,小张做了 c 道 由题意 1/2a=1/3b=1/8c c-a=72 解得 a=24 b=36 c=96 13.甲乙二人共同完成 242 个机器零件。甲做一个零件要 6 分钟,乙做一个零件要 5 分钟。完 成这批零件时,两人各做了多少个零件? 答案 设甲做了 X 个,则乙做了(242-X)个 6X=5(242-X) X=110 242-110=132(个) 答:甲做了 110 个,乙做了 132 个 14.某工会男女会员的人数之比是 3: 2, 分为甲乙丙三组, 已知甲乙丙三
12、组人数之比是 10:8:7, 甲组中男女比是 3:1,乙组中男女比是 5:3。求丙组男女人数之比 答案 设男会员是 3N,则女会员是 2N,总人是:5N 甲组有:5N*10/10+8+7=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N 丙级有:5N*7/25=7/5N 丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N 那么丙组中男女之比是:N/2:9/10N=5:9 15.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是 8:7:5 原来三
13、个村计 划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲 乙两村分担,丙村付给甲乙两村工钱 1350 元,结果,甲村共派出 60 人,乙村共派出 40 人, 问甲乙两村各应分得工钱多少元? 答案 根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20 份 每份需要的人数: (60+40)20=5 人 甲村需要的人数:85=40 人,多出劳力人数:60-40=20 人 乙村需要的人数:75=35 人,多出劳力人数:40-35=5 人 丙村需要的人数:55=25 人 或 20+5=25 人 每人应得的钱数:135025=54 元 甲村应得的工钱:5420=1080
14、元 乙村应得的工钱: 545=270 元 p166 19 题 16.李明的爸爸经营已个水果店,按开始的定价,每买出 1 千克水果,可获利 0.2 元。后来李 明建议爸爸降价销售,结果降价后每天的销量增加了 1 倍,每天获利比原来增加了 50%。问: 每千克水果降价多少元? 答案 设以前卖出 X降价 a那么 0.2X * (1+0.5)=(0.2-a) *2x 则 0.1X=2aX a=0.05 .哈利.波特参加数学竞赛,他一共得了 68 分。评分的标准是:每做对一道得 20 分,每做错 一道倒扣 6 分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试 卷共有多少道题? 解:
15、设哈利波特答对 2X 题,答错 X 题 202X-6X=68 40X-6X=68 34X=68 X=2 答对:22=4 题 共有:4+2=6 题 17.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要 另付行李费,三人共付了 4 元,而三人行李共重 150 千克,如果这些行李让一个人带,那么 除了免费部分,应另付行李费 8 元,求每人可免费携带行李的质量。 答案 设可免费携带的重量为 x kg,则: (150-3x)/4=(150-x)/8/等式两边非免费部分单价相同; 解方程:x=30 18.一队少先队员乘船过河,如果每船坐 15 人,还剩 9 人,如果每船坐
16、18 人,刚好剩余 1 只 船,求有多少只船? 答案 解法一: 设船数为 X,则 (15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 答:有 9 只船。 解法二: (15+9)(18-15)=8 只船 -每船坐 18 人时坐了 8 只船 8+1=9 只船 19.建筑工地有两堆沙子,一堆比 2 堆多 85 吨,两堆沙子各用去 30 吨后,一堆剩的是 2 堆的 2 倍,两堆沙子原来各有多少吨? 答案 设 2 堆为 X 吨,则一堆为 X+85 吨 X+85-30=2(X-30) x=115(2 堆) x+85=115+85=200(1 堆) 自然数 1-100 排列,用长方形
17、框出二行六个数,六个数和为 432,问这六个数最小的是几 答案 六个数分别是 464748969798 20.甲乙两地相距 420 千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙 地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小 时 40 千米.泥土路长多少千米? 答案 两段路所用时间共 8 小时。 柏油路时间: (420 x)60 泥土路时间: x40 7-(x60)+(x40)=8 有 x120=1 所以 x=120 21.一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个 人一只汤碗,放在你这儿有 55
18、 只碗,你算算有多少人? 设有 x 个人 xx2x355 x30 22.学校购买 840 本图书分给高、中、低三个年级段,高年级段分的是低年级段的 2 倍,中年 级段分的是低年级段的 3 倍少 120 本。三个年级段各分得多少本图书? 设低年级段分得 x 本书,则高年级段分得 2x 本,中年级段分得(3x-120)本 x+2x+3x-120=840 6x-120=840 6x=840+120 6x=960 x=960/6 x=160 高年级段为:160*2=320( 本)中年级段为:160*3-120=360(本) 答:低年级段分得图书 160 本,中年级段分得图书 360 本,高年级段分得图
19、书 320 本. 23.学校田径组原来女生人数占 1/3,后来又有 6 名女生参加进来,这样女生就占田径组总人数 的 4/9。现在田径组有女生多少人? 解设 原来田径队男女生一共 x 人 1/3x+6= 4/9(x+6) x=30 1/3x+6=30*1/3+6=16 女生 16 人 24.小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来 各有连环画多少本? 解:设小华的有 x 本书 4(x+2)=6x+2 4x+8=6x+2 x=3 6x=18 25.小春一家四口人今年的年龄之和为 147 岁,爷爷比爸爸大 38 岁,妈妈比小春大 27 岁,爷 爷的年龄是小春与
20、妈妈年龄之和的 2 倍。小春一家四口人的年龄各是多少? 答案 1 设小春 x 岁,则妈妈 x+27 岁,爷爷(x+x+27)*2=4x+54 岁,爸爸 4x+54-38=4x+16 岁 x+x+27+4x+54+4x+16=147,x=5 所以小春 5 岁,妈妈 32 岁,爷爷 74 岁,爸爸 36 岁。 2 爷爷+爸爸+(妈妈+小春) =爷爷+(爷爷-38)+(爷爷/2)=147 爷爷=74 岁 爸爸=36 岁 妈妈+小春=小春+27+小春=74/2=37 小春=5 岁 妈妈=5+27=32 岁 小春一家四口人的年龄各是 74,36,32,5 岁 3 (147+38)(22+1)=37(岁)
21、 36274(岁) 爷爷的年龄 743836(岁) 爸爸的年龄 (37+27)232(岁) 妈妈的年龄 32275(岁) 小华的年龄 26.甲乙两校共有 22 人参加竞赛,甲校参加人数的 5 分之 1 比乙校参加人数的 4 分之 1 少 1 人,甲乙两校各多少人参赛? 解:设甲校有 x 人参加,则乙校有(22-x)人参加。 0.2 x=(22-x)0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12(人) 答: 甲校有 10 人参加,乙校有 12 人参加。 27.在浓度为 40%的盐水中加入千克水,浓度变为 30%,再加入多千克盐,浓度变为 50%?
22、答案 1 解 设原有盐水 x 千克,则有盐 40 x 千克,所以根据关系列出方程: (40 x)/(x1)30 得出 x3,再设须加入 y 千克盐,则有方程: (1.2y)/(4+y)=50%得出 y1.6 54 比 45 多 20,算法,设所求为 x,x(120)=54 算出结果 45 答案 2 设原有溶液为 x 千克,加入 y 千克盐后,浓度变为 50% 由题意,得溶质为 40%x,则有 40%x/(x+5)=30% 解之得 x=15 千克 则溶质有 15*40%=6 千克 由题意,得 (6+y)/(15+5+y)=50% 解之得 y=8 千克 故再加入 8 千克盐,浓度变为 50% 28
23、.某人到商店买红蓝两种钢笔,红钢笔定价 5 元,蓝钢笔定价 9 元,由于购买量较多,商店 给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的 18%,已知他买了蓝 钢笔 30 枝,那么。他买了几支红钢笔? 答案 红笔买了 x 支。 (5x+309)(1-18%)=5x0.85+3090.8 x=36. 29.甲说:“我乙丙共有 100 元。”乙说:“如果甲的钱是现有的 6 倍,我的钱是现有的 1/3, 丙的钱不变,我们仍有钱 100 元。”丙说:“我的钱都没有 30 元。”三人原来各有多少钱? 答案 乙的话表明:甲钱 5 倍与乙钱 2/3 一样多 所以,乙钱是 3*5=15 的倍数
24、,甲钱是偶数 丙钱不足 30,所以,甲乙钱和多于 70, 而乙多于甲的 6 倍, 所以,乙多于 60 设乙=75,甲=75*2/35=10,丙=100-10-75=15 设乙=90,甲=90*2/35=12,90+12100,不行 所以,三人原来:甲 10 元,乙 75 元,丙 15 元 30.某厂向银行申请甲乙两种贷款共 30 万,每年需支付利息 4 万元,甲种贷款年利率为 12%, 乙种贷款年利率为 14%,该厂申请甲乙两种贷款金额各多少元? 答案 设:甲厂申请贷款金额 x 万元,则乙厂申请贷款金额(30-x)万元。 列式:x*0.12+(30-x)*0.14=4 化简:4.2-0.02x
25、=4 0.02x=0.2 解得:x=10(万元) 31.某书店对顾客有一项优惠,凡购买同一种书 100 本以上,就按书价的 90%收款。某学校到 书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的 3/5 只有甲种书得到了 90%的优 惠。其中买甲种书所付的钱数是买乙种书所付钱数的 2 倍。已知乙种书每本 1.5 元,那么甲 种书每本定价多少元? 答案 1 根据题意, 甲种超过了 100 本,乙种不到 100 本 甲乙花的总钱数比为 2:1 那么甲打折以前,和乙的总钱数比为: (20.9) :1=20:9 甲乙册数比为 5:3 甲乙单价比为(205) : (93)=4:3 优惠前,甲种每本:
26、1.54/3=2 元 答案 2 答案 设甲买了 x 本,则乙为 3/5x,x100 买乙共付了:3/5x*1.5=0.9x 元 则甲共付了:0.9x*2=1.8x 元 所以甲优惠后每本为:1.8x/x=1.8 元 则优惠前:1.8/0.9=2 元 32.两支成分不同的蜡烛,其中 1 支以均匀速度燃烧,2 小时烧完,另一支可以燃烧 3 小时,傍晚 6 时半同时点燃蜡烛,到什么 1 支剩余部分正好是另一支剩余的 2 倍? 答案 两支蜡烛分别设为 A 蜡烛和 B 蜡烛,其中 A 蜡烛是那支烧得快点的 A 蜡烛,两小时烧完,那么每小时燃烧 1/2 B 蜡烛,三小时烧完,那么每小时燃烧 1/3 设过了
27、x 小时以后,B 蜡烛剩余的部分是 A 的两倍 2(1x/2)=1x/3 解得 x=1.5 由于是 6 点半开始的,所以到 8 点的时候刚刚好 33.学校组织春游,同学们下午 1 点从学校出发,走了一段平路,爬了一座山后按原路返回, 下午七点回到学校。已知他们的步行速度平路 4Km/小时,爬山 3Km/小时,下山为 6Km/小时, 返回时间为 2.5 时。问:他们一共行了多少路 答案 1 设走的平路是 X 公里 山路是 Y 公里 因为 1 点到七点共用时间 6 小时 返回为 2.5 小时 则去时用 3.5 小时 Y/3-Y/6=1 小时 Y=6 公里 去时共用 3.5 小时 则 X/4+Y/3
28、=3.5 X=6 所以总路程为 2(6+6)=24km 答案 2 解:春游共用时:7:001:006(小时) 上山用时:62.53.5(小时) 上山多用:3.52.51(小时) 山路: (63)1(36)6(千米) 下山用时:661(小时) 平路: (2.51)46(千米) 单程走路:6612(千米) 共走路:12224(千米) 答:他们共走 24 千米。 工程问题 1甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时.丙水管单独开,排一池 水要 10 小时,若水池没水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满 还是要多少小时? 解: 1/20+1/169/80
29、 表示甲乙的工作效率 9/80545/80 表示 5 小时后进水量 1-45/8035/80 表示还要的进水量 35/80(9/80-1/10)35 表示还要 35 小时注满 答:5 小时后还要 35 小时就能将水池注满。 2修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。如果两队合作,由于彼 此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效 率只有原来的十分之九。现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那 么两队要合作几天? 解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为 1/20*4/5+
30、1/30*9/10 7/100,可知甲乙合作工效甲的工效乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16 天内实在来不 及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为 x 天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x1 x10 答:甲乙最短合作 10 天 3一件工作,甲、乙合做需 4 小时完成,乙、丙合做需 5 小时完成。现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4 表示甲乙合作 1 小时的工作量,1/5 表示乙丙合作 1 小时
31、的工作量 (1/4+1/5)29/10 表示甲做了 2 小时、乙做了 4 小时、丙做了 2 小时的工作量。 根据“甲、丙合做 2 小时后,余下的乙还需做 6 小时完成”可知甲做 2 小时、乙做 6 小时、 丙做 2 小时一共的工作量为 1。 所以 19/101/10 表示乙做 6-42 小时的工作量。 1/1021/20 表示乙的工作效率。 11/2020 小时表示乙单独完成需要 20 小时。 答:乙单独完成需要 20 小时。 4一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么 恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮 流做
32、,那么完工时间要比前一种多半天。已知乙单独做这项工程需 17 天完成,甲单独做这项 工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+1/甲1 1/乙+1/甲+1/乙+1/甲+1/乙+1/甲0.51 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做 法就不比第一种多 0.5 天) 1/甲1/乙+1/甲0.5(因为前面的工作量都相等) 得到 1/甲1/乙2 又因为 1/乙1/17 所以 1/甲2/17,甲等于 1728.5 天 5师徒俩人加工同样多的零件。当师傅完成了 1/2 时,徒弟完成了 120 个。当师傅完成了任 务时,徒弟完成了 4/
33、5 这批零件共有多少个? 答案为 300 个 120(4/52)300 个 可以这样想:师傅第一次完成了 1/2,第二次也是 1/2,两次一共全部完工,那么徒弟第二次 后共完成了 4/5,可以推算出第一次完成了 4/5 的一半是 2/5,刚好是 120 个。 6一批树苗,如果分给男女生栽,平均每人栽 6 棵;如果单份给女生栽,平均每人栽 10 棵。 单份给男生栽,平均每人栽几棵? 答案是 15 棵 算式:1(1/6-1/10)15 棵 7一个池上装有 3 根水管。甲管为进水管,乙管为出水管,20 分钟可将满池水放完,丙管 也是出水管,30 分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,
34、打开乙,丙两 管用了 18 分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案 45 分钟。 1(1/20+1/30)12 表示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后,还多放了 6 分钟的水,也就 是甲 18 分钟进的水。 1/2181/36 表示甲每分钟进水 最后就是 1(1/20-1/36)45 分钟。 8某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规 定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几 天? 答案为 6 天 解: 由
35、“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好 如期完成,”可知: 乙做 3 天的工作量甲 2 天的工作量 即:甲乙的工作效率比是 3:2 甲、乙分别做全部的的工作时间比是 2:3 时间比的差是 1 份 实际时间的差是 3 天 所以 3(3-2)26 天,就是甲的时间,也就是规定日期 方程方法: 1/x+1/(x+2)2+1/(x+2)(x-2)1 解得 x6 9两根同样长的蜡烛,点完一根粗蜡烛要 2 小时,而点完一根细蜡烛要 1 小时,一天晚上停 电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现 粗蜡烛的长是细蜡烛的 2 倍,问
36、:停电多少分钟? 答案为 40 分钟。 解:设停电了 x 分钟 根据题意列方程 1-1/120*x(1-1/60*x)*2 解得 x40 二鸡兔同笼问题 1鸡与兔共 100 只,鸡的腿数比兔的腿数少 28 条,问鸡与兔各有几只? 解: 4*100400,400-0400 假设都是兔子,一共有 400 只兔子的脚,那么鸡的脚为 0 只,鸡的 脚比兔子的脚少 400 只。 400-28372 实际鸡的脚数比兔子的脚数只少 28 只,相差 372 只,这是为什么? 4+26 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少 4 只(从 400 只变为 396 只) ,鸡的总脚数就会增加 2 只
37、(从 0 只到 2 只) ,它们的相差数就会少 4+26 只(也就 是原来的相差数是 400-0400,现在的相差数为 396-2394,相差数少了 400-3946) 372662 表示鸡的只数,也就是说因为假设中的 100 只兔子中有 62 只改为了鸡,所以脚 的相差数从 400 改为 28,一共改了 372 只 100-6238 表示兔的只数 三数字数位问题 1把 1 至 2005 这 2005 个自然数依次写下来得到一个多位数 123456789.2005,这个多位 数除以 9 余数是多少? 解: 首先研究能被 9 整除的数的特点:如果各个数位上的数字之和能被 9 整除,那么这个数也能
38、 被 9 整除;如果各个位数字之和不能被 9 整除,那么得的余数就是这个数除以 9 得的余数。 解题:1+2+3+4+5+6+7+8+9=45;45 能被 9 整除 依次类推:11999 这些数的个位上的数字之和可以被 9 整除 1019,20299099 这些数中十位上的数字都出现了 10 次,那么十位上的数字之和就是 10+20+30+90=450 它有能被 9 整除 同样的道理,100900 百位上的数字之和为 4500 同样被 9 整除 也就是说 1999 这些连续的自然数的各个位上的数字之和可以被 9 整除; 同样的道理:10001999 这些连续的自然数中百位、十位、个位 上的数字
39、之和可以被 9 整除 (这里千位上的“1”还没考虑,同时这里我们少 200020012002200320042005 从 10001999 千位上一共 999 个“1”的和是 999,也能整除; 200020012002200320042005 的各位数字之和是 27,也刚好整除。 最后答案为余数为 0。 2A 和 B 是小于 100 的两个非零的不同自然数。求 A+B 分之 A-B 的最小值. 解: (A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。 对于 B / (
40、A+B) 取最小时,(A+B)/B 取最大, 问题转化为求 (A+B)/B 的最大值。 (A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是: 98 / 100 3已知 A.B.C 都是非 0 自然数,A/2 + B/4 + C/16 的近似值市 6.4,那么它的准确值是多少? 答案为 6.375 或 6.4375 因为 A/2 + B/4 + C/168A+4B+C/166.4, 所以 8A+4B+C102.4,由于 A、B、C 为非 0 自然数,因此 8A+4B+C 为一个整数,可能是 102, 也有可能
41、是 103。 当是 102 时,102/166.375 当是 103 时,103/166.4375 4一个三位数的各位数字 之和是 17.其中十位数字比个位数字大 1.如果把这个三位数的百 位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大 198,求原数. 答案为 476 解:设原数个位为 a,则十位为 a+1,百位为 16-2a 根据题意列方程 100a+10a+16-2a100(16-2a)-10a-a198 解得 a6,则 a+17 16-2a4 答:原数为 476。 5 一个两位数,在它的前面写上 3,所组成的三位数比原两位数的 7 倍多 24,求原来的两位数. 答案
42、为 24 解:设该两位数为 a,则该三位数为 300+a 7a+24300+a a24 答:该两位数为 24。 6 把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然 数的平方,这个和是多少? 答案为 121 解:设原两位数为 10a+b,则新两位数为 10b+a 它们的和就是 10a+b+10b+a11(a+b) 因为这个和是一个平方数,可以确定 a+b11 因此这个和就是 1111121 答:它们的和为 121。 7一个六位数的末位数字是 2,如果把 2 移到首位,原数就是新数的 3 倍,求原数. 答案为 85714 解:设原六位数为 abcde2,则新六位数
43、为 2abcde(字母上无法加横线,请将整个看成一个六 位数) 再设 abcde(五位数)为 x,则原六位数就是 10 x+2,新六位数就是 200000+x 根据题意得, (200000+x)310 x+2 解得 x85714 所以原数就是 857142 答:原数为 857142 8有一个四位数,个位数字与百位数字的和是 12,十位数字与千位数字的和是 9,如果个位数 字与百位数字互换,千位数字与十位数字互换,新数就比原数增加 2376,求原数. 答案为 3963 解:设原四位数为 abcd,则新数为 cdab,且 d+b12,a+c9 根据“新数就比原数增加 2376”可知 abcd+23
44、76=cdab,列竖式便于观察 abcd 2376 cdab 根据 d+b12,可知 d、b 可能是 3、9;4、8;5、7;6、6。 再观察竖式中的个位,便可以知道只有当 d3,b9;或 d8,b4 时成立。 先取 d3,b9 代入竖式的百位,可以确定十位上有进位。 根据 a+c9,可知 a、c 可能是 1、8;2、7;3、6;4、5。 再观察竖式中的十位,便可知只有当 c6,a3 时成立。 再代入竖式的千位,成立。 得到:abcd3963 再取 d8,b4 代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。 9有一个两位数,如果用它去除以个位数字,商为 9 余数为 6,如果用这个两位
45、数除以个位数 字与十位数字之和,则商为 5 余数为 3,求这个两位数. 解:设这个两位数为 ab 10a+b9b+6 10a+b5(a+b)+3 化简得到一样:5a+4b3 由于 a、b 均为一位整数 得到 a3 或 7,b3 或 8 原数为 33 或 78 均可以 10如果现在是上午的 10 点 21 分,那么在经过 28799.99(一共有 20 个 9)分钟之后的时间 将是几点几分? 答案是 10:20 解: (287999(20 个 9)+1)/60/24 整除,表示正好过了整数天,时间仍然还是 10:21,因 为事先计算时加了 1 分钟,所以现在时间是 10:20 四排列组合问题 1
46、有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( ) A 768 种 B 32 种 C 24 种 D 2 的 10 次方中 解: 根据乘法原理,分两步: 第一步是把 5 对夫妻看作 5 个整体,进行排列有 54321120 种不同的排法,但是因 为是围成一个首尾相接的圈,就会产生 5 个 5 个重复,因此实际排法只有 120524 种。 第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有 2 种排法,总共又 2222232 种 综合两步,就有 2432768 种。 2 若把英语单词 hello 的字母写错了,则可能出现的错误共有 ( ) A 119 种 B 36 种 C 5
47、9 种 D 48 种 解: 5 全排列 5*4*3*2*1=120 有两个 l 所以 120/2=60 原来有一种正确的所以 60-1=59 五容斥原理问题 1 有 100 种赤贫.其中含钙的有 68 种,含铁的有 43 种,那么,同时含钙和铁的食品种类的最 大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值 68+43-10011 最大值就是含铁的有 43 种 2在多元智能大赛的决赛中只有三道题.已知:(1)某校 25 名学生参加竞赛,每个学生至少解 出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的
48、 2 倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多 1 人;(4)只解出一道题的学 生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为 7 类:只答第 1 题,只答第 2 题,只答第 3 题,只答第 1、2 题,只答第 1、3 题,只答 2、3 题,答 1、2、3 题。 分别设各类的人数为 a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a12325 由(2)知:a2+a23(a3+ a23)2 由(3)知:a12+a1
49、3+a123a11 由(4)知:a1a2+a3 再由得 a23a2a32 再由得 a12+a13+a123a2+a31 然后将代入中,整理得到 a24+a326 由于 a2、a3 均表示人数,可以求出它们的整数解: 当 a26、5、4、3、2、1 时,a32、6、10、14、18、22 又根据 a23a2a32可知:a2a3 因此,符合条件的只有 a26,a32。 然后可以推出 a18,a12+a13+a1237,a232,总人数8+6+2+7+225,检验所有条件 均符。 故只解出第二题的学生人数 a26 人。 3一次考试共有 5 道试题。做对第 1、2、3、 、4、5 题的分别占参加考试人
50、数的 95%、80%、 79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为 71。 假设一共有 100 人考试 100-955 100-8020 100-7921 100-7426 100-8515 5+20+21+26+1587(表示 5 题中有 1 题做错的最多人数) 87329(表示 5 题中有 3 题做错的最多人数,即不及格的人数最多为 29 人) 100-2971(及格的最少人数,其实都是全对的) 及格率至少为 71 六抽屉原理、奇偶性问题 1一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出 几只手