1、用用“假设假设”的策略解决问题(的策略解决问题(2 2)教学内容:P7071 例 2 和“练一练” ,练习十一第 47 题。教学目标:1、进一步学会用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。2、在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。教学重点:让学生掌握用“假设”的策略解决一些简单问题的方法。教学难点:怎样使用“假设”的策略解决实际问题。教学过程:一、导入谈话:我们每天写作业都要用到笔,请拿出你最喜欢
2、的笔,举起来给大家看看。教师选择一支钢笔,问:你这支笔多少钱买的?学生回答后, 教师拿出自己的一支铅笔, 问: 老师这支铅笔值()钱。我想用这支铅笔换你这支笔,你愿意吗?(不愿意) ,为什么(不公平)提问:请同学们帮老师一个忙,怎样才能公平地换到这支笔?师:我们用数学语言说 1 支笔的价格可以替换成()支铅笔的价格,或者说()支铅笔的价格可以替换成 1 支笔的价格。师: 刚才老师与这位同学换笔, 说明 “替换” 其实就在我们身边,我们读过的“曹冲称象”的故事,就是一个用“替换”来解决问题的2017 年“一师一优课”教学设计典型事例。既然生活中到处都有,这节课,我们就一起来探讨如何用替换(假设)
3、的策略解决问题。二、例题教学,探索新知1.出示例 2在 1 个大盒和 5 个同样的小盒里装满球,正好是 80 个。每个大盒比小盒多装 8 个。大盒里装了多少个球?每个小盒呢?2.分析比较。提问:这道题和我们学习过的例 1 有什么不同?根据回答概括:例 1 是倍数关系,而这题是相差关系。师:我们能用学过的知识来尝试解决这个新问题么?3.探索假设的过程。(1)明确题目条件师:从题目中我们可以得出哪些已知条件?1 个大盒球的数量个大盒球的数量5 个小盒球的数量个小盒球的数量80 个个1 个小盒球的数量个小盒球的数量1 个大盒球的数量个大盒球的数量81 个大盒球的数量个大盒球的数量1 个小盒球的数量个
4、小盒球的数量8(2)出示相应的假设过程图。我们可以尝试运用什么策略来解决这个问题?(假设的策略) ,可以如何假设呢?(1、假设都是小盒、假设都是小盒) ,那还能装,那还能装 80 个球吗?为什么?个球吗?为什么?(2、假设都是大盒、假设都是大盒) ,那还能装,那还能装 80 个球吗?为什么?个球吗?为什么?(3)解决问题。下面请同学们任选一种方法,在作业纸上解答。 (学生独立完成,师巡视指导) 。指名板书,全班交流。追问:这儿的“8”什么意思?为什么要8?这儿的“40”什么意思?为什么还要+40?4.回顾反思。提问:在解决这道题时,我们用到了什么方法?(假设)通过假设,就可以把两种不同的盒子假设成一种相同的盒子。但要注意的是,假设以后什么发生了变化?(装球的总数发生了变化)所以计算时要用 808 或 80+40。三、巩固反思,提升策略。做“练一练”第 1 题。独立练习,完成后交流核对。四、全课总结这两节课我们学了什么本领?结合例 1 和例 2 的学习, 你想提醒自己或同学用假设解决问题时,应有什么要注意的地方?五、作业:练习十一第 6、7 题。