1、学海无涯分式的约分、通分经典练习题1.不改变下列分式的值,使分式的分子、分母首相字母都不含负号。y x x y x +yx 2y x y约分练习:1根据分数的约分,把下列分式化为最简分式:8a226(a+b)26a +b125a2bc3212a45ab c13(a+b)13a b=_;=_=_=_2222、约分3a3b3c(x+y)yx2+ xyx2y212acxy(x+y)(xy)22223、约分:;(1).x(3)(4)(5);(6);x25xa + a 624a2b3d 25(a +b)a b4 x224.约分2b ab(a +b)2c26x2y + 2xy216a4b2c5a 2aa
2、+b + c9x2 y212a3b4c222a + 2bm3+ 2m2+ m2y(2y x)415mn2+10m2n4a24b2m216x(x 2y)35mn(x+y)(ab)x23x 18x2+6x+9a2935.约分(1)x29(2)a 6a +9(3)(x+y) (ab)(4)x2922(5)x+4x+32x+ x62(6)12a3(yx)2x2y+ xy2x7x2227a(xy)(7)(8)2xy49x(9) ( 10)m22m+11 x1mx22 3x + 21学海无涯6.约分:(1);(2);(3);(4) ( 5); ( 6);(7); ( 8)(9);(10)4x3y +12x
3、2y2+9xy37.先化简,再求值:,其中 x=1,y=14x 9xy32通分练习:1.通分:(1)yx14a3c5b,。; ( 2)2x 3y4xy5b c 10a b 2ac22222.通分:(1)x12x,(2x 4)26x 3x2x2 412x, ( 2),;x21 x23x + 23.通分:(1)x y;2y21b(2);x2 x 1(3),x3x + yx 14a2ac2(4)2a1111,(5)93a a29(a b)(b c) (b c)(c a) (a c)(a b)4通分:(1)yz3x3bc2a125,; ( 2),; ( 3),。2x 3y 4z4a6ab3b c8x y 3x y z 6xz324232(4)yx1154,; ( 5),; ( 6),;a(x + 2) b(x + 2)x(y x) 2x 2y2(x 2) 3(2 x)22