微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT

上传人(卖家):罗嗣辉 文档编号:2039728 上传时间:2022-01-19 格式:PPT 页数:27 大小:1.57MB
下载 相关 举报
微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT_第1页
第1页 / 共27页
微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT_第2页
第2页 / 共27页
微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT_第3页
第3页 / 共27页
微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT_第4页
第4页 / 共27页
微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、设空间曲线的方程设空间曲线的方程)1()()()( tztytx ozyx(1)式中的三个函数均可导式中的三个函数均可导.一、空间曲线的切线与法平面一、空间曲线的切线与法平面M.),(0000tttzzyyxxM 对应于对应于;),(0000ttzyxM 对应于对应于设设M 考察割线趋近于极限位置考察割线趋近于极限位置切线的过程切线的过程zzzyyyxxx 000t t t 上式分母同除以上式分母同除以, t ozyxMM 割线割线 的方程为的方程为MM ,000zzzyyyxxx ,0,时时即即当当 tMM曲线在曲线在M处的处的切线方程切线方程.)()()(000000tzztyytxx 切

2、向量切向量:切线的方向向量称为:切线的方向向量称为曲线的切向量曲线的切向量. )(),(),(000tttT 法平面法平面:过:过M点且与切线垂直的平面点且与切线垂直的平面.0)()()(000000 zztyytxxt 解解当当0 t时,时,, 2, 1, 0 zyx,costext ,sincos2tty ,33tez , 1)0( x, 2)0( y, 3)0( z切线方程切线方程,322110 zyx法平面方程法平面方程, 0)2(3)1(2 zyx. 0832 zyx即即1.空间曲线方程为空间曲线方程为,)()( xzxy ,),(000处处在在zyxM,)()(100000 xzz

3、xyyxx . 0)()()(00000 zzxyyxxx 法平面方程为法平面方程为切线方程为切线方程为特殊地:特殊地:2.空间曲线方程为空间曲线方程为,0),(0),( zyxGzyxF切线方程为切线方程为,000000yxyxxzxzzyzyGGFFzzGGFFyyGGFFxx 法平面方程为法平面方程为. 0)()()(000000 zzGGFFyyGGFFxxGGFFyxyxxzxzzyzy例例 2 2 求曲线求曲线6222 zyx,0 zyx在在点点)1, 2, 1( 处的切线及法平面方程处的切线及法平面方程.解解 1 1 直直接接利利用用公公式式;解解 2 2 将所给方程的两边对将所

4、给方程的两边对x求导并移项,得求导并移项,得 1dxdzdxdyxdxdzzdxdyy,zyxzdxdy ,zyyxdxdz 由由此此得得切切向向量量,1, 0, 1 T所求切线方程为所求切线方程为,110211 zyx法平面方程为法平面方程为, 0)1()2(0)1( zyx0 zx, 0)1,2, 1( dxdy, 1)1,2, 1( dxdz设曲面方程为设曲面方程为0),( zyxF),(),(),(000tttT 曲线在曲线在M处的切向量处的切向量在曲面上任取一条通在曲面上任取一条通过点过点M的曲线的曲线,)()()(: tztytx 二、曲面的切平面与法线二、曲面的切平面与法线nTM

5、),(),(),(000000000zyxFzyxFzyxFnzyx 令令则则,Tn 切平面方程为切平面方程为0)(,()(,()(,(000000000000 zzzyxFyyzyxFxxzyxFzyx 通通过过点点),(000zyxM而而垂垂直直于于切切平平面面的的直直线线称称为为曲曲面面在在该该点点的的法法线线.法线方程为法线方程为),(),(),(000000000000zyxFzzzyxFyyzyxFxxzyx ),(),(),(000000000zyxFzyxFzyxFnzyx 曲面在曲面在M处的法向量即处的法向量即垂直于曲面上切平面的向量称为垂直于曲面上切平面的向量称为曲面的法向

6、量曲面的法向量.特殊地:空间曲面方程形为特殊地:空间曲面方程形为),(yxfz 曲面在曲面在M处的切平面方程为处的切平面方程为,)(,()(,(0000000zzyyyxfxxyxfyx 曲面在曲面在M处的法线方程为处的法线方程为.1),(),(0000000 zzyxfyyyxfxxyx,),(),(zyxfzyxF 令令)(,()(,(0000000yyyxfxxyxfzzyx 切平面切平面上点的上点的竖坐标竖坐标的增量的增量的全微分的全微分在点在点函数函数),(),(00yxyxfz 因为曲面在因为曲面在M处的切平面方程为处的切平面方程为全微分的几何意义全微分的几何意义),(yxfz 在

7、在),(00yx的全微分,表示的全微分,表示曲面曲面),(yxfz 在点在点),(000zyx处的处的切平面上的点的竖坐标的增量切平面上的点的竖坐标的增量.,1cos22yxxfff ,1cos22yxyfff .11cos22yxff ),(00yxffxx ),(00yxffyy 其中其中例例 3 3 求旋转抛物面求旋转抛物面122 yxz在点在点)4 , 1 , 2(处的切平面及法线方程处的切平面及法线方程.解解, 1),(22 yxyxf)4, 1 ,2()4, 1 ,2(1,2,2 yxn,1, 2, 4 切平面方程为切平面方程为, 0)4()1(2)2(4 zyx, 0624 zy

8、x法线方程为法线方程为.142142 zyx例例 4 4 求曲面求曲面32 xyezz在点在点)0 , 2 , 1(处的处的切平面及法线方程切平面及法线方程.解解, 32),( xyezzyxFz, 42)0,2, 1()0,2, 1( yFx, 22)0,2, 1()0,2, 1( xFy, 01)0,2, 1()0,2, 1( zzeF令令切平面方程切平面方程法线方程法线方程, 0)0(0)2(2)1(4 zyx, 042 yx.001221 zyx解解设设 为曲面上的切点为曲面上的切点,),(000zyx切平面方程为切平面方程为0)(6)(4)(2000000 zzzyyyxxx依题意,

9、切平面方程平行于已知平面,得依题意,切平面方程平行于已知平面,得,664412000zyx .2000zyx 因为因为 是曲面上的切点,是曲面上的切点,),(000zyx, 10 x所求切点为所求切点为满足方程满足方程),2 , 2 , 1(),2, 2, 1( 0)2(12)2(8)1(2 zyx2164 zyx0)2(12)2(8)1(2 zyx2164 zyx切平面方程切平面方程(1)切平面方程切平面方程(2)空间曲线的切线与法平面空间曲线的切线与法平面曲面的切平面与法线曲面的切平面与法线(当空间曲线方程为一般式时,求切向(当空间曲线方程为一般式时,求切向量注意采用量注意采用推导法推导法

10、)(求法向量的方向余弦时注意(求法向量的方向余弦时注意符号符号)三、小结三、小结思考题思考题 如如果果平平面面01633 zyx 与与椭椭球球面面163222 zyx相相切切,求求 .思考题解答思考题解答,2,2,6000zyxn 设切点设切点),(000zyx依题意知法向量为依题意知法向量为3, 3 32236000 zyx ,00 xy ,300 xz 切点满足曲面和平面方程切点满足曲面和平面方程,016930169320202200020 xxxxxx . 2 证明证明 曲面曲面)(xyfxz 上任一点处的上任一点处的切平面都通过原点切平面都通过原点.提示提示: 在曲面上任意取一点在曲面

11、上任意取一点, ),(000zyxM则通过此则通过此0zz)(0 xxxzM)(0yyyzM1. 设设 f ( u ) 可微可微,证明原点坐标满足上述方程证明原点坐标满足上述方程 .点的切平面为点的切平面为练习练习2. 证明曲面证明曲面0),(ynzymxF与定直线平行与定直线平行,.),(可微其中vuF证证: 曲面上任一点的法向量曲面上任一点的法向量,1F, )()(21nFmF )2F取定直线的方向向量为取定直线的方向向量为,m,1)n则则(定向量定向量)故结论成立故结论成立 .的所有切平面恒的所有切平面恒(n(l,0nl一、一、 填空题填空题: :1 1、 曲线曲线2,1,1tzttyt

12、tx 再对应于再对应于1 t的点的点处切线方程为处切线方程为_; 法平面方程为法平面方程为_._.2 2、 曲面曲面3 xyzez在点在点)0 , 1 , 2(处的切平面方程为处的切平面方程为_; 法线方程为法线方程为_._.二、二、 求出曲线求出曲线32,tztytx 上的点上的点, ,使在该点的切使在该点的切线平行于平面线平行于平面42 zyx. .三、三、 求球面求球面6222 zyx与抛物面与抛物面22yxz 的交线的交线在在)2 , 1 , 1(处的切线方程处的切线方程 . .练练 习习 题题一、一、1 1、011682 ,8142121 zyxzyx; 2 2、 02112, 042zyxyx. .二、二、)271,91,31()1, 1 , 1(21 PP及及. .三、三、 0202021111zyxzyx或或. .四、四、2112 zyx. .练习题答案练习题答案

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(微积分下册多元函数微分法及其应用课件:6.微分法在几何上的应用.PPT)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|