1、主讲人:于斌办公室:光电所324电话:26538592,15999623903,663903E_mail:2022年1月18日深圳大学光电工程学院第一章 几何光学基本定律与成像概念第二章 理想光学系统第三章 平面与平面系统第四章 光学系统中的光束限制第六章 光线的光路计算及相差理论第七章 典型光学系统第九章 光学系统的像质评价和像差公差 以光线为基础、用几何方法来研究:以光线为基础、用几何方法来研究:l 光在介质中的传播规律光在介质中的传播规律l 光学系统的成像特性光学系统的成像特性1.1 1.1 几何光学的基本定律和原理几何光学的基本定律和原理 1.2 1.2 成像的基本概念与完善成像条件成
2、像的基本概念与完善成像条件1.3 1.3 光路计算与近轴光学系统光路计算与近轴光学系统1.4 1.4 球面光学成像系统球面光学成像系统 主要内容:主要内容: 本章本章总结 1.1.1 1.1.1 基本概念基本概念 1.1.2 1.1.2 几何光学的基本定律几何光学的基本定律1.1.3 1.1.3 费马原理费马原理1.1.4 1.1.4 马吕斯定律马吕斯定律 1 1、光波、光波: : l 本质:电磁波,可见光(380nm760nm)。l 单色光(具有单一波长的光)和复色光(由不同的单色光混合而组成的光)l 传播速度:c 3108 m/s,在介质中 n()=C/V()光波与电磁波2 2、光源与发光
3、点:、光源与发光点:l 光源(发光体):能够辐射光能的物体。l 发光点(点光源):辐射光能量的几何点。3 3、光线、光线l由发光点发出的光抽象为能够传输能量的几何线,它代表光的传播方向。4 4、波面与光束、波面与光束l 波面:振动位相相同的点在一瞬间所构成的曲面l 光束:与波面对应的法线束l 光波的分类:基本定律1 1、光的直线传播定律、光的直线传播定律 2 2、光的独立传播定律、光的独立传播定律 在各向同性的均匀介质中,光是沿着直线方向传播的在各向同性的均匀介质中,光是沿着直线方向传播的 不同光源发出的光在空间某点相遇时,彼此互不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播不
4、影响,各光束独立传播基本定律3 3、反射定律:、反射定律: 注意:光路的可逆性原理注意:光路的可逆性原理1)1)入射光线、反射光线和分界面上入射光线、反射光线和分界面上的入射点的法线三者在同一平面内的入射点的法线三者在同一平面内。2) 入射角和反射角的绝对值相等入射角和反射角的绝对值相等而符号相反,即入射光线和反射而符号相反,即入射光线和反射光线位于法线的两侧,即光线位于法线的两侧,即 I=-I光的反射与折射光的反射与折射基本定律sinsinnsinsinInInnII或4 4、折射定律:、折射定律: 注意区别:绝对折射率、相对折射率注意区别:绝对折射率、相对折射率1 1)入射光线、折射光线和
5、分界入射光线、折射光线和分界面上的入射点的法线三者在同一面上的入射点的法线三者在同一平面内。平面内。2)入射角的正弦与折射角的正弦入射角的正弦与折射角的正弦之比和入射角的大小无关,只与之比和入射角的大小无关,只与两种介质的折射率有关两种介质的折射率有关光的反射与折射光的反射与折射 折射率折射率n n:描述介质中的光速相对于真空中的光速减慢程度的:描述介质中的光速相对于真空中的光速减慢程度的物理量,即:物理量,即:n=c/v.n=c/v.它是表征透明介质光学性质的重要参数。它是表征透明介质光学性质的重要参数。5 5、全反射及其应用、全反射及其应用nnsinI90(sinnsinm)IInI基本定
6、律注意:注意:l 光密介质(折射率较高的介质)光密介质(折射率较高的介质)l 光疏介质(折射率较低的介质)光疏介质(折射率较低的介质)l 临界角临界角 (折射角等于(折射角等于9090 的入射角)的入射角) 由折射定律可求出临界角由折射定律可求出临界角I Im ml全反射条件:全反射条件:(1 1)光线从光密介质进入光疏介质;)光线从光密介质进入光疏介质;(2 2)入射角大于临界角。)入射角大于临界角。5 5、全反射及其应用、全反射及其应用基本定律(2 2)反射棱镜)反射棱镜等等l应用应用:(1 1)光纤)光纤光纤的全反射光原理全反射棱镜 例题例题11、若水面下若水面下2020厘米处有一发光点
7、,我们在水面厘米处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大?上能看到被该发光点照亮的范围(圆直径)有多大?基本定律u有光线射出水面进入人眼有光线射出水面进入人眼水水200mmu水到空气(光密到光疏)水到空气(光密到光疏)u入射角大于临界角,发生全入射角大于临界角,发生全反射,无光线从水中射出反射,无光线从水中射出1 1、光程:光程:2 2、原理内容:、原理内容: 光在介质中传播的几何路程光在介质中传播的几何路程l与该介质折射与该介质折射率率n的积的积s,即:,即:S=nl=cl/v=ct 见图见图1-6 光从一点传播到另一点时,其间无论进行了多少光从一点传播到另一点时
8、,其间无论进行了多少次反射或折射,其光程为极值。光是沿着光程是极次反射或折射,其光程为极值。光是沿着光程是极值的方向传播的。值的方向传播的。0dndnlSlSBABA3、解释:、解释: 在均匀介质中,光沿着直线传播。在非均匀在均匀介质中,光沿着直线传播。在非均匀介质中,光不再沿直线传播,此时折射率介质中,光不再沿直线传播,此时折射率n为空间为空间位置的函数,其光程应有极值。位置的函数,其光程应有极值。例题例题2利用费马原理证明光的反射定律利用费马原理证明光的反射定律CAOBnNO为动点。为动点。1)O为待定的反射点,以满足光程为待定的反射点,以满足光程S(AOB)为极值)为极值(费马原理)。费
9、马原理)。2)引入)引入B的镜像对称点的镜像对称点C,连接,连接OC,则,则 ,且,且S(OB)S(OC) 。 3)于是)于是S(AOB)=S(AOC),它为极小值的条它为极小值的条件是件是AOB为一直线为一直线, 即即 = , I=I”II”4)证毕。)证毕。光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。这种正交性表明,垂直于波面的光线束经过任意多次折、反射后,无论折、反射面形如何,出射光束仍垂直于出射波面。马吕斯定律描述了光经过任意多次折、反射后,光束与波面、光线与光程之间的关系。1.2.1 光学系统与成像概念 1.2.2 完
10、善成像条件1.2.3 物、像的虚实1、光学系统的作用: 2、完善像点与完善像:、完善像点与完善像: 3、物空间、像空间:、物空间、像空间: 4、共轴光学系统:、共轴光学系统: 5、光轴:、光轴: 对物体成像,扩展人眼的功能对物体成像,扩展人眼的功能。 若一个物点对应的一束同心光束,经光学系统后仍为同心若一个物点对应的一束同心光束,经光学系统后仍为同心光束,该光光束,该光 束中心即为该物点的完善像点。束中心即为该物点的完善像点。 完善像是完善像完善像是完善像点的集合。点的集合。物所在的空间、像所在的空间。物所在的空间、像所在的空间。 若光学系统中各个光学元件表面的曲率中心在一条直线上若光学系统中
11、各个光学元件表面的曲率中心在一条直线上,则该光学系统是共轴光学系统。,则该光学系统是共轴光学系统。各光学元件表面的曲率中心的连线。各光学元件表面的曲率中心的连线。 完善成像条件表述一:表述一: 入射波面是球面波时,出射波面也是球面波。入射波面是球面波时,出射波面也是球面波。CAOnOOnOOnOOnOAnAEnEEnEEnEEnEAnkkkkkkkk21211112121111表述二:表述二: 入射光是同心光束时,出射光也是同心光束入射光是同心光束时,出射光也是同心光束。表述三:表述三: 物点及像点之间的任意两条光路的光程相等。物点及像点之间的任意两条光路的光程相等。物(像)的虚实1 1、实物
12、(像):实物(像):2 2、虚物(像):、虚物(像): 物像的虚实物像的虚实(实物、实像、虚物、虚像以及物空间、像空间)(实物、实像、虚物、虚像以及物空间、像空间)由实际光线相交会聚所形成的的物(像)。由实际光线相交会聚所形成的的物(像)。 由光线的延长线相交所形成的物(像)。由光线的延长线相交所形成的物(像)。1.3.1 基本概念与符合规则 1.3.2 实际光线的光路计算1.3.3 近轴光线的光路计算1、 基本概念l光轴:通过球心光轴:通过球心C C的直线的直线 l顶点:光轴与球面的交点顶点:光轴与球面的交点l子午面:通过物点和光轴的截面子午面:通过物点和光轴的截面l物方截距:顶点物方截距:
13、顶点O O到光线与光轴交点到光线与光轴交点A A的距离的距离l物方孔径角:入射光线与光轴的夹角物方孔径角:入射光线与光轴的夹角l像方截距:像方截距:l像方孔径角:像方孔径角:1) 沿轴线段(L,L,r):规定光线的方向自左向右,以折射面顶点O为原点,由顶点到光线与光轴交点或球心的方向和光线传播的方向相同为正,反之为负。2) 垂轴线段(h):以光轴为基准,在其上为正,反之为负。3)光线与光轴的夹角(U,U):用光轴转向光线所形成的锐角来度量,顺时针为正,反之为负。4) 光线与法线的夹角(I,I):由光线以锐角转向法线,顺时针为正,反之为负。5)光轴与法线的夹角():由光轴以锐角转向法线,顺时针为
14、正,反之为负。6)折射面间隔(d):由前一面的顶点到后一面的顶点,顺光线方向为正,反之为负。(折射系统中,d恒为正)2、符号规则符号规则实际光线的光路计算已知:折射球面曲率半径r, 介质折射率为n和n, 及物方坐标L和U。求:像方L和U1. 以上即为子午面内实际光线的光路计算公式,给 出U、L,可计算出U、L,以A为顶点,2U为顶角 的圆锥面光线会聚于A点。2.由上面推导可知:L=f(L,U)、U=g(L,U),当L不变 ,只U变化时,L也变。说明“球差”的存在。实际光线的光路计算1. 以上即为子午面内实际光线的光路计算公式,给出U、L,可计算出U、L,以A为顶点,2U为顶角的圆锥面光线会聚于
15、A点。)sinsin1 (sinsinsinsinsin)(sin)sin()-180sin(UIrLrUrLIIIUUIUIUInnIrUrLIrUrLI实际光线的光路计算2.由上面推导可知:L=f(L,U)、U=g(L,U),当L不变,只U变化时,L也变。说明“球差”的存在。同心光束经折射后,出射光束不再是同心光束,这表明,单个折射球面对轴上物点成像是不完善的,这种现象称之为“球差”。轴上点成像的不完善性轴上点成像的不完善性)sinsin1 (UIrLIIUU近轴光线的光路计算概念:近轴区、近轴光线(5)式说明:在近轴区l只是l的函数,它不随孔径u而变化,轴上物点在近轴区成完善像,这个像点
16、称高斯像点)5()()4()1 ()3( )2()1 (rlnlnlrnluirliiuuinniurrli近轴光线的光路计算在近轴区有: 由公式(1)(2)(3)(4)(5)(6)可推出:(7)式中Q称为阿贝不变量;(8)式表明了物、像孔径角的关系;(9)式表明了物、像位置关系luulh)9()8()()7()11()11( rnnlnlnrhnnnuunQlrnlrn1.4.1 单个折射面成像 1.4.2 球面反射镜成像1.4.3 共轴球面系统 本节要解决的问题:有限大的物体经过折射球面乃本节要解决的问题:有限大的物体经过折射球面乃至球面光学系统后的放大、缩小问题,以及像的正倒、虚至球面光
17、学系统后的放大、缩小问题,以及像的正倒、虚实问题。实问题。1、 垂轴放大率(像与物的大小之比):说明:(1)0,y与y同号,成正像;反之成倒像(2)0,l与l同号,物像虚实相反,反之虚实相同(3) |1,放大像,反之缩小像。lnnlyyABCABClrrlyy2、轴向放大率(物点沿光轴做微小移动时, 像点移动量与物点移动量之比。)222)/ (/ nnlnnldldl说明:1)恒为正,物点沿轴向移动时,其像点沿同方向移动 2)!=,空间物体会变形。rnnlnln)/1 (/ nnlluu3、 角放大率(一对共轭光线与光轴的夹角之比)说明:角放大率只与共轭点的位置有关,而与孔径角无关,表示折射面
18、有将光束变宽或变窄的能力luulh5、拉赫不变量:拉格朗日-亥姆霍兹不变量 由 得它是表征光学系统的重要指标/yunnulnnlyyunnuyJ4、的关系:球面反射成像u物像位置关系:rll211rnnlnln nna) 凹面镜成像凹面镜成像b)凸面镜成像)凸面镜成像球面反射成像a) 凹面镜成像凹面镜成像b)凸面镜成像)凸面镜成像12llu成像放大率:12nnnnlnnl nn球面反射成像说明:由说明:由=-=-2 2知:物体沿光轴移动时,像总是反向移动。知:物体沿光轴移动时,像总是反向移动。当物点位于球心时,当物点位于球心时,l=rl=r,l=rl=r,=-1=-1,r=1r=1。u拉赫不变
19、量:J=uy=-uy共轴球面系统如图所示,有过渡公式, , , , , , 123121231212312kkkkkkyyyyyyuuuuuunnnnnn1.某一面的物空间就是其前一面的像空间:共轴球面系统如图所示,有过渡公式2.后一面的物距与前一面的像距之间的关系11223112,kkkdlldlldll共轴球面系统如图所示,有过渡公式3.光线入射高度的关系, , 11122231112kkkkudhhudhhudhh共轴球面系统如图所示,有过渡公式4.拉赫不变量:Jyunyunyunyunyunyunkkkkkk222222111111成像放大率公式成像放大率公式导出公式导出公式三者之间的
20、关系:三者之间的关系:kkkkkkkkkkkkuuuuuuuudldldldldldldldlyyyyyyyy21221112122111212211111211122111kkkkkkknnnnununllllllnn共轴球面系统总结n掌握光波、光线的基本概念。n掌握几何光学的四个基本定律n掌握折射率的概念n掌握全反射现象的定义。n掌握费马原理的定义、马吕斯定律的定义。n掌握完善成像的三个等价条件。n掌握物象虚实的定义。n掌握符号法则。n掌握近轴光线的光路计算。n掌握单个折射面成像计算,垂轴放大率,轴向放大率,角放大率的定义,计算。n掌握球面反射镜成像系统的特性,计算公式,放大率n掌握共轴球面系统的过渡公式,尤其两个面组成的共轴球面光学系统。作业n2、3、4、8、16、18、19、20、21