半导体材料与技术课件:chapter4-3(第一章).ppt

上传人(卖家):罗嗣辉 文档编号:2057162 上传时间:2022-01-26 格式:PPT 页数:88 大小:7.18MB
下载 相关 举报
半导体材料与技术课件:chapter4-3(第一章).ppt_第1页
第1页 / 共88页
半导体材料与技术课件:chapter4-3(第一章).ppt_第2页
第2页 / 共88页
半导体材料与技术课件:chapter4-3(第一章).ppt_第3页
第3页 / 共88页
半导体材料与技术课件:chapter4-3(第一章).ppt_第4页
第4页 / 共88页
半导体材料与技术课件:chapter4-3(第一章).ppt_第5页
第5页 / 共88页
点击查看更多>>
资源描述

1、Chapter 4 Semiconductor devices4.1 Ideal pn junction4.2 pn Junction Band Diagram4.3 Bipolar Transistor4.4 Junction Field Effect Transistor4.5 Metal Oxide Semiconductor Field Effect Transistor4.6 Light Emitting Diodes4.7 Solar CellsFrom Principles of electronic Materials Devices, SO Kasap (McGraw-Hil

2、l, 2005)4.1 Ideal pn junction4.1 Ideal pn junction4.1 Ideal pn junction4.1 Ideal pn junction4.1 Ideal pn junction4.1 Ideal pn junctionME(x)(e)xEo-WpWn0VoV(x)x(f)PE(x)Electron PE(x)eVox(g)-eVoHole PE(x)Considering an abrupt pn junction:net(x) can simply be described by step functions shown in Fig. (d

3、). Using the step form of net(x) in Fig. (d) in the integration ofgives the electric field at M. ME(x)(e)xEo-WpWn0VoV(x)x(f)PE(x)Electron PE(x)eVox(g)-eVoHole PE(x)Integrate the expression for E(x) in Fig. (e) to evaluate the potential V(x) and thus find V0 by putting in x=Wn.W0=Wn+Wp, is the total

4、width of the depletion region under a zero applied voltage.ME(x)(e)xEo-WpWn0VoV(x)x(f)PE(x)Electron PE(x)eVox(g)-eVoHole PE(x)The simplest way to relate V0 to the doping parameters is to make use of the fact that in the system consisting of p- and n- type semiconductors joined together, in equilibri

5、um, Blotzmann statistics demands that the concentrations n1 and n2 of carriers at potential energies E1 and E2 are related byME(x)(e)xEo-WpWn0VoV(x)x(f)PE(x)Electron PE(x)eVox(g)-eVoHole PE(x)Considering electrons (q=-e), we see from Fig. (g) that E=0 on the p side far away from M where n=npo, and E

6、=-eVo on the n-side away from M where n=nno. ThusWhich mean that Vo depends on nno and npo and hence on Nd and Na. The corresponding equation for hole concentrations is clearlyME(x)(e)xEo-WpWn0VoV(x)x(f)PE(x)Electron PE(x)eVox(g)-eVoHole PE(x)RearrangingAndWe obtainWe can now write ppo and pno in te

7、rms of the dopant concentrations inasmuch as ppo=Na andForward bias: diffusion currentForward bias: diffusion currentForward bias: diffusion current(b)Forward bias: diffusion current(b)Forward bias: diffusion currentLaw of the junction is an important equation that we(b)Forward bias: diffusion curre

8、nt(b)Forward bias: diffusion current(b)Forward bias: diffusion current(b)Forward bias: diffusion current(b)Forward bias: diffusion currentxJn-regionSCLMinority carrier diffusioncurrentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority

9、carrier diffusioncurrentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority carrier diffusioncurrentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority carrier diffusioncur

10、rentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority carrier diffusioncurrentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority carrier diffusioncurrentMajority carrier

11、diffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecxJn-regionSCLMinority carrier diffusioncurrentMajority carrierdiffusion and driftcurrentTotal currentWn-Wpp-regionJ = Jelec+ JholeJholeJelecSchematic sketch of the I-V characteristics of Ge, Si and GaAs pn JunctionsGeSiGaA

12、sCurrentVoltage0.1 mA0 0.2 0.4 0.6 0.8 1.0Neutral n-regionNeutral p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. Reverse biasNeutral n-regionNeutral

13、 p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. Reverse biasWoxe(Vo+Vr)eVoW(V= -Vr)MHolePE(x)Reverse biased pn junction. (b) Hole PE across the junc

14、tion under reverse biasNeutral n-regionNeutral p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. Reverse biaspositiveNeutral n-regionNeutral p-regionxW

15、HolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. Neutral n-regionNeutral p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority Carrier

16、ConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. Neutral n-regionNeutral p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and

17、the origin of the reverse current. Neutral n-regionNeutral p-regionxWHolesElectronsDiffusionDriftThermallygeneratedEHPpnonpoEo+EVrMinority CarrierConcentrationWoReverse biased pn junction. (a) Minority carrier profiles and the origin of the reverse current. (a) Reverse I-V characteristics of a pn ju

18、nction (the positive and negative current axes have different scales). Ideal diodeSpace charge layergeneration, surface leakagecurrent, etc.VnAImA(a)(a) Reverse I-V characteristics of a pn junction (the positive and negative current axes have different scales). Ideal diodeSpace charge layergeneratio

19、n, surface leakagecurrent, etc.VnAImA(a)Jgen increases with Vr because W increases with Vr4.2 pn Junction Band DiagramEcEvEFnnn-Type SemiconductorEFppCBp-Type SemiconductorVBVBCBEcEvEg(a) Two isolated p and n-type semiconductors (same material). (b) A pn junctionband diagram when the two semiconduct

20、ors are in contact. The Fermi level must beuniform in equilibrium. The metallurgical junction is at M. The region around Mcontains the space charge layer (SCL). On the n-side of M, SCL has the exposedpositively charged donors whereas on the p-side it has the exposed negativelycharged acceptors.MpnEo

21、MBulkEcEvEFnEcEvDonors in SCLAcceptors in SCLEFpeVo=p-n4.2 pn Junction Band DiagramEcEvEFnnn-Type SemiconductorEFppCBp-Type SemiconductorVBVBCBEcEvEg(a) Two isolated p and n-type semiconductors (same material). (b) A pn junctionband diagram when the two semiconductors are in contact. The Fermi level

22、 must beuniform in equilibrium. The metallurgical junction is at M. The region around Mcontains the space charge layer (SCL). On the n-side of M, SCL has the exposedpositively charged donors whereas on the p-side it has the exposed negativelycharged acceptors.MpnEoMBulkEcEvEFnEcEvDonors in SCLAccept

23、ors in SCLEFpeVo=p-n4.2 pn Junction Band DiagramEcEvEFnnn-Type SemiconductorEFppCBp-Type SemiconductorVBVBCBEcEvEg(a) Two isolated p and n-type semiconductors (same material). (b) A pn junctionband diagram when the two semiconductors are in contact. The Fermi level must beuniform in equilibrium. The

24、 metallurgical junction is at M. The region around Mcontains the space charge layer (SCL). On the n-side of M, SCL has the exposedpositively charged donors whereas on the p-side it has the exposed negativelycharged acceptors.MpnEoMBulkEcEvEFnEcEvDonors in SCLAcceptors in SCLEFpeVo=p-n4.2 pn Junction

25、 Band DiagramEcEvEFnnn-Type SemiconductorEFppCBp-Type SemiconductorVBVBCBEcEvEg(a) Two isolated p and n-type semiconductors (same material). (b) A pn junctionband diagram when the two semiconductors are in contact. The Fermi level must beuniform in equilibrium. The metallurgical junction is at M. Th

26、e region around Mcontains the space charge layer (SCL). On the n-side of M, SCL has the exposedpositively charged donors whereas on the p-side it has the exposed negativelycharged acceptors.MpnEoMBulkEcEvEFnEcEvDonors in SCLAcceptors in SCLEFpeVo=p-n4.2 pn Junction Band DiagramMpnEoMBulkEcEvEFnEcEvD

27、onors in SCLAcceptors in SCLEFpeVo=p-n4.2 pn Junction Band DiagramMpnEoMBulkEcEvEFnEcEvDonors in SCLAcceptors in SCLEFpeVo=p-nForwardbiasVInpEo-Ee(Vo-V)eVEcEFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)ForwardbiasVInpEo-Ee(Vo-V)eVEcEFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)ForwardbiasVInpEo-Ee(Vo-V)eVEc

28、EFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)ForwardbiasVInpEo-Ee(Vo-V)eVEcEFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)ForwardbiasVInpEo-Ee(Vo-V)eVEcEFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)ForwardbiasVInpEo-Ee(Vo-V)eVEcEFnEvEvEcEFp(b)EcEvEcEFpMEFneVopnEoEvnp(a)Energy band diagrams for a pn junction und

29、er (c) reverse bias conditions. Reverse biasEnergy band diagrams for a pn junction under (c) reverse bias conditions. Reverse biasReverse biasEnergy band diagrams for a pn junction under (d) Thermal generation of electron hole pairs in the depletion region results in a small reverse current.Reverse

30、biasEnergy band diagrams for a pn junction under (d) Thermal generation of electron hole pairs in the depletion region results in a small reverse current.4.3 Bipolar Transistorpn(0)pn(x)pnoWEBWBCWBnponp(0)EICIEIBxBVCBVEBnp(x)E(b)Cp+np(a)EmiterBaseCollectorICIE(a) A schematic illustration of the pnp

31、bipolar transistor with three differently doped regions. (b) The pnp bipolar operated under normal and active conditions.4.3 Bipolar Transistor4.3 Bipolar Transistor4.3 Bipolar Transistor(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and a

32、ctive conditions.Fig. (c) shows the CB transistor circuit with the BJT represented by its circuit symbol. The arrow identified the emitter junction and points in the direction of current flow when the EB junction is forward biased. Fig. (c) also identifies the emitter circuit, where VEB is connected

33、, as the input circuit. The collector circuit, where VCB is connected, is the output circuit. (c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pn

34、p bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and acti

35、ve conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration w

36、ith input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified

37、(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under norma

38、l and active conditions.(c) The CB configuration with input and output circuits identified(b) The pnp bipolar operated under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditi

39、ons.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditi

40、ons.In t, a(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active

41、conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active

42、conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.(b) The pnp bipolar operated under normal and active conditions.(d) The illustration of various current components under normal and active conditions.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(半导体材料与技术课件:chapter4-3(第一章).ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|