1、2020高考试题(全国卷 I)文科数学1、 选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则ABCD 2若,则ABCD 3埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为ABCD4设为正方形的中心,在,中任选3点,则取到三点共线的概率为A BCD 5某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下
2、面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是ABCD6已知圆,过点的直线被该圆所截得的弦长最小值为A BCD 7设函数在的图像大致如下图,则的最小正周期为ABCD8设,则A BCD 9执行右面的程序框图,则输出的ABCD 10设是等比数列,且,则A BCD 11设,是双曲线的两个焦点,为坐标原点,点在上且,则的面积为ABCD12已知,为球的球面上的三个点,为的外接圆若的面积为,则球的表面积为ABCD二、填空题:本题共4小题,每小题5分,共20分13若满足约束条件,则的最大值是_14设向量,若,则_15曲线的一条切线的斜率为,则该切线的方程为_16若数列满足,前项为和,则_三、解
3、答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级
4、的频数分布表分 乙厂产品等级的频数分布表等级ABCD频数40202020等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,一平均利润为依据,厂家应选哪个分厂承接加工业务?18(12分) 的内角,的对边分别为a,b,c已知(1)若,求的面积;(2)若,求19(12分)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,是底面的内接正三角形,为上一点,(1)证明:平面平面;(2)设,圆锥的侧面积为,求三棱锥的体积20(12分)已知函数(1)当时,讨论的单调性;(2)若有两个零点,求的取值范围21(12分
5、)已知分别为椭圆的左、右顶点,为的上顶点,为直线上的动点,与的另一交点为,与的另一交点为(1)求的方程;(2)证明:直线过定点(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22选修4-4:坐标系与参数方程(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标23选修4-5:不等式选讲(10分)已知函数(1)画出的图象;(2)求不等式的解集2020高考试题(全国卷 II)文科数学一、选择题:本题共 12 小题,每小题 5 分,共 6
6、0 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则A B C D 2A B 4C D 3如图,将钢琴上的12个键依次记为,设若且,则称为原位大三和弦;若且,则称为原位小三和弦用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A 5B 8C 10D 154在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,为使第二天完成积压订单及当日订单的配货概率不小于095,则至少需要志愿者A 10名B 18名C 24名D 32名5已知单位
7、向量的夹角为60,则在下列向量中,与垂直的是ABCD6记为等比数列的前项和若则ABCD7执行右图的程序框图,若输入的,则输出的为A2B3C4D58若过点的圆与两坐标轴都相切,则圆心到直线的距离为ABCD9设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为A4B8C16D3210设函数,则A是奇函数,且在单调递增B是奇函数,且在单调递减C是偶函数,且在单调递增D是偶函数,且在单调递减11已知是面积为的等边三角形,且其顶点都在球的表面上,若球的表面积为,则球到平面的距离为ABCD12若,则ABCD二、填空题:本题共 4 小题,每小题 5 分,共 20 分13设,则
8、_14记为等差数列的前项和,若,则_15若满足约束条件,则的最大值是_16 设有下列四个命题:两两相交且不过同一点的三条直线必在同一平面内:过空间中任意三点有且仅有一个平面:若空间两条直线不相交,则这两条直线平行:若直线平面,直线平面,则则下述命题中所有真命题的序号是_ 三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第17-21题为必考题,每个试题考生都必须作答第22、23题为选考题,考试根据要求作答(一)必考题:共60分17(12分)的内角,的对边分别为,已知(1) 求;(2) 若,证明:是直角三角形18(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加 为
9、调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2) 求样本的相关系数(精确到001);(3) 根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由附:相关系数,19(12分)已知椭圆的右焦点与抛物线的焦点重合,的中心与
10、的顶点重合过且与轴垂直的直线交手两点,交于两点,且(1)求的离心率;(2)若的四个顶点到的准线距离之和为12,求与的标准方程20(12分)如图,已知三棱柱的底面是正三角形,侧面是矩形,分别为的中点,为上一点过和的平面交于,交于(1)证明:,且平面平面;(2)设为的中心,若,且,求四棱锥的体积21(12分)已知函数(1)若,求的取值范围;(2)设,讨论函数的单调性(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22选修4-4:坐标系与参数方程(10分)已知曲线,的参数方程分别为:(为参数),:(为参数)(1)将,的参数方程化为普通方程;(2)以坐标原点为极
11、点,轴正半轴为极轴建立极坐标系设,的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程23选修4-5:不等式选讲(10分)已知函数(1)当时,求不等式的解集;(2)若,求的取值范围2020高考试题(全国卷 III)文科数学一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则中元素的个数为A2B3C4D52复数,则ABCD3设一组样本数据的方差为001,则数据的方差为A001B01C1D104Logistic模型是常用数学模型之一,可应用于流行病学领域有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic
12、模型:,其中为最大确诊病例数当时,标志着已初步遏制疫情,则约为A60B63C66D695已知,则ABCD6在平面内,是两个定点,是动点若,则点的轨迹为A圆B椭圆C抛物线D直线7设为坐标原点,直线与抛物线交于两点,若,则的焦点坐标为ABCD8点到直线距离的最大值为A1BCD29右图为某几何体的三视图,则该几何体的表面积是A BCD 10设,则ABCD11在中,则ABCD12设函数,则A的最小值为2B的图像关于轴对称C的图像关于直线对称D的图像关于直线对称二、填空题:本题共4小题,每小题5分,共20分13若满足约束条件,则的最大值是_14设双曲线的一条渐近线为,则的离心率为_15设函数,若,则_1
13、6已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必选题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答17(12分)设等比数列满, (1)求的通项公式;(2)设为数列的前n项和,若,求18(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天)空气质量等级锻炼人次0,200(200,400(400,6001 (优)216252 (良)510123 (轻度污染)6784 (申度污染)720(1)分别估计该市一天的空气质量等级
14、为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2则称这天空气质量好:若某天的空气质量等级为3或4,则称这天空气质量不好根据所给数据,完成下面的22列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次人次空气质量好空气质量不好,0.050.0100.0013.8416.63510.82819(12分)如图,在长方体中,点,分别在棱上,且,证明:(1) 当时,;(2) 点在平面内20(12分)已知函数(1) 讨论的单调性;(2) 若有三个零点,求的取值
15、范围21(12分)已知椭圆:的离心率为,分别为的左、右顶点(1) 求椭圆的方程;(2) 若点在上,点在直线上,且,求的面积(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22选修4-4:坐标系与参数方程(10分)在直角坐标系中,曲线的参数方程为(为参数且),与坐标轴交于,两点(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求直线的极坐标方程23选修4-5:不等式选讲(10分)设,(1)证明:;(2)用表示,的最大值,证明:2019年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中
16、,只有一项是符合题目要求的。1设,则=A2BCD12已知集合,则ABCD3已知,则ABCD4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A165 cmB175 cmC185 cmD190 cm5函数f(x)=在-,的图像大致为ABCD6某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,1 000,从这些新生中用系统抽样方法等距抽取100
17、名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A8号学生B200号学生C616号学生D815号学生7tan255=A-2-B-2+C2-D2+8已知非零向量a,b满足=2,且(a-b)b,则a与b的夹角为A B C D 9如图是求的程序框图,图中空白框中应填入AA=BA=CA=DA=10双曲线C:的一条渐近线的倾斜角为130,则C的离心率为A2sin40B2cos40CD11ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A6B5C4D312已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,则C的方程为ABCD
18、二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_14记Sn为等比数列an的前n项和.若,则S4=_15函数的最小值为_16已知ACB=90,P为平面ABC外一点,PC=2,点P到ACB两边AC,BC的距离均为,那么P到平面ABC的距离为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女
19、顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:P(K2k)0.0500.0100.001k3.8416.63510.82818(12分)记Sn为等差数列an的前n项和,已知S9=-a5(1)若a3=4,求an的通项公式;(2)若a10,求使得Snan的n的取值范围19(12分)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离20(12分)已知函数f(x)=2sinx-x
20、cosx-x,f (x)为f(x)的导数(1)证明:f (x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求a的取值范围21.(12分)已知点A,B关于坐标原点O对称,AB =4,M过点A,B且与直线x+2=0相切(1)若A在直线x+y=0上,求M的半径;(2)是否存在定点P,使得当A运动时,MA-MP为定值?并说明理由(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为(
21、1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值23选修45:不等式选讲(10分)已知a,b,c为正数,且满足abc=1证明:(1);(2)2019年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则AB=A(-1,+)B(-,2)C(-1,2)D2设z=i(2+i),则=A1+2iB-1+2iC1-2iD-1-2i3已知向量a=(2,3),b=(3,2),则|a-b|=AB2C5D504生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该
22、指标的概率为ABCD5在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙6设f(x)为奇函数,且当x0时,f(x)=,则当x0)两个相邻的极值点,则=A2BC1D9若抛物线y2=2px(p0)的焦点是椭圆的一个焦点,则p=A2B3C4D810曲线y=2sinx+cosx在点(,-1)处的切线方程为AB CD11已知a(0,),2sin2=cos2+1,则sin=ABCD12设F为双曲线C:(a0,b0)
23、的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D二、填空题:本题共4小题,每小题5分,共20分。13若变量x,y满足约束条件则z=3xy的最大值是_.14我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_.15的内角A,B,C的对边分别为a,b,c已知bsinA+acosB=0,则B=_.16中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱
24、体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有_个面,其棱长为_(本题第一空2分,第二空3分)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB
25、1C1;(2)若AE=A1E,AB=3,求四棱锥的体积18(12分)已知是各项均为正数的等比数列,.(1)求的通项公式;(2)设,求数列的前n项和19(12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表的分组企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01)附:.20(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形
26、,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围21(12分)已知函数证明:(1)存在唯一的极值点;(2)有且仅有两个实根,且两个实根互为倒数(二)选考题:共10分请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分22选修4-4:坐标系与参数方程(10分)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23选修4-5:不等式选讲(10分)已知 (1)当时,求不等式的解集;(2)若时,求的取值范围.2019年普通高等学校招生全国统一
27、考试文科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给的四个选项中,只有一项是符合题目要求的。 1已知集合,则ABCD2若,则z=A BCD3两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 ABCD4西游记三国演义水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位,阅读过西游记且阅读过红楼梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为A0.5 B0.6 C0.7D0.85函数在0,2的零点
28、个数为A2 B3 C4D56已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=A16B8C4 D27已知曲线在点(1,ae)处的切线方程为y=2x+b,则Aa=e,b=1Ba=e,b=1Ca=e1,b=1Da=e1,8如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则ABM=EN,且直线BM,EN是相交直线BBMEN,且直线BM,EN是相交直线CBM=EN,且直线BM,EN是异面直线DBMEN,且直线BM,EN是异面直线9执行下边的程序框图,如果输入的为,则输出的值等于A.B. C. D. 10已知F是双曲线C:的一
29、个焦点,点P在C上,O为坐标原点,若,则的面积为ABCD11记不等式组表示的平面区域为D命题;命题下面给出了四个命题这四个命题中,所有真命题的编号是ABCD12设是定义域为R的偶函数,且在单调递减,则A(log3)()() B(log3)()()C()()(log3) D()()(log3)二、填空题:本题共4小题,每小题5分,共20分。13已知向量,则_.14记Sn为等差数列an的前n项和,若,则_.15设为椭圆C:的两个焦点,M为C上一点且在第一象限若为等腰三角形,则M的坐标为_.16学生到工厂劳动实践,利用3D打印技术制作模型如图,该模型为长方体挖去四棱锥OEFGH后所得的几何体,其中O
30、为长方体的中心,E,F,G,H分别为所在棱的中点,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为_g.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。 17(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别
31、得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)18(12分)的内角A、B、C的对边分别为a、b、c已知(1)求B;(2)若ABC为锐角三角形,且c=1,求ABC面积的取值范围19(12分)图1是由矩形ADEB,ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60将其沿AB,BC折起使得BE与BF重合,连结DG,如图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面
32、BCGE;(2)求图2中的四边形ACGD的面积.20(12分)已知函数(1)讨论的单调性;(2)当0a3时,记在区间0,1的最大值为M,最小值为m,求的取值范围21(12分)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)如图,在极坐标系Ox中,弧,所在圆的圆心分别是,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,的极坐标方程
33、;(2)曲线由,构成,若点在M上,且,求P的极坐标.23选修45:不等式选讲(10分)设,且(1)求的最小值;(2)若成立,证明:或. 2018年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知集合A0,2,B2,1,0,1,2,则AB()A0,2B1,2 C0D2,1,0,1,22设z2i,则|z|()A0B C1D3某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中
34、不正确的是()A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4已知椭圆C:1的一个焦点为(2,0),则C的离心率为()A.B CD5已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A12B12 C8D106设函数f(x)x3(a1)x2ax.若f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为()Ay2xByx Cy2xDyx7在ABC中,AD为BC边上的中线,E为AD的中点,则()A.BC
35、.D8已知函数f(x)2cos2xsin2x2,则()Af(x)的最小正周期为,最大值为3Bf(x)的最小正周期为,最大值为4Cf(x)的最小正周期为2,最大值为3Df(x)的最小正周期为2,最大值为49某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A2B2 C3D210在长方体ABCDA1B1C1D1中,ABBC2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A8B6 C8D811已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2,则|ab|()A.B CD112设函数f(x),则满足f(x1)1的解集;(2)若x(0,1)时不等式f(x)x成立,求a的取值范围2018年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的