用列举法求概率(1直接列举法-列表法)课件.ppt

上传人(卖家):三亚风情 文档编号:2204584 上传时间:2022-03-21 格式:PPT 页数:29 大小:2.20MB
下载 相关 举报
用列举法求概率(1直接列举法-列表法)课件.ppt_第1页
第1页 / 共29页
用列举法求概率(1直接列举法-列表法)课件.ppt_第2页
第2页 / 共29页
用列举法求概率(1直接列举法-列表法)课件.ppt_第3页
第3页 / 共29页
用列举法求概率(1直接列举法-列表法)课件.ppt_第4页
第4页 / 共29页
用列举法求概率(1直接列举法-列表法)课件.ppt_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、25.2. 用列举法求概率(1)等可能性事件:在一次试验中各种结果出现的可能性大小相等的事件。试验具有两个共同特征:温故知新:一次试验中,可能出现的结果只有有限个一次试验中,各种结果出现的可能性相等。一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为事件A发生的可能种数试验的总共可能种数nmAP=)(等可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法例2、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上例2、掷两枚硬

2、币,求下列事件的概率:(1)两枚硬币全部正面朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反所有的结果共有4个,并且这四个结果出现的可能性相等。(1)(1)所有的结果中,满足两枚硬币全部正面朝上所有的结果中,满足两枚硬币全部正面朝上(记为事件(记为事件A A)的结果只有一个,即)的结果只有一个,即“正正正正”所以所以 P P(A A)= =14(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”所以 P(B)=(3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面

3、朝上(记为事件C)的结果共有2个,即“正反”“反正”所以 P(C)=14142142利用一一列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2。探究分析:当一次试验要涉及两个因素(例如掷两个骰子或抛两枚硬币)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法。把两个骰子分别标记为第1个和第2个,列表如下:123456123456w用表格列举出所有可能出现的结果(1,1)(1,2)(1,3)(1,4)(1,5)

4、(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1 )(2,2)(3,3)(4,4)(5,5)(6,6)(1)满足两个骰子点数相同(记为事件A) 36661 P(A)=第一个第二个123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1

5、)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(6,3

6、)(5,4)(4,5)(3,6)(2)满足两个骰子点数和为9(记为事件B) 36491P(B)=w用表格列举出所有可能出现的结果第一个第二个123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,

7、2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(3)满足至少有一个骰子的点数为2(记为事件C) w用表格列举出所有可能出现的结果3611)(CP第一个第二个没有变化例2.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币

8、全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:正正反反正正(正正,正正)(正正,反反)反反(反反,正正)(反反,反反)AB总共4种结果,每种结果出现的可能性相同.(1)所有结果中,满足两枚硬币全部正面朝上的结果只有一个,即”(正,正)”,所以P(两枚硬币全部正面朝上)=41例.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:正正反反正正(正正,正正)(正正,反反)反反(反反,正正)(

9、反反,反反)AB总共4种结果,每种结果出现的可能性相同.(2)所有结果中,满足两枚硬币全部反面朝上的结果只有一个,即”(反,反)”,所以P(两枚硬币全部反面朝上)=41(3)所有结果中,满足一枚硬币正面朝上, 一枚硬币反面朝上的结果有2个,即”(正,反),(反,正)”,所以P(一枚硬币正面朝上,一枚硬币反面朝上)=2142如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:w如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.驶向胜利的彼岸123

10、思考2:解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.转盘转盘摸球摸球112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)123这个游戏对小亮和小明公平吗?怎样才算公平 ? 小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:”我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗? 思考1:你能求出小亮得

11、分的概率吗?123456123456红桃黑桃w用表格表示(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4

12、,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)总结经验:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表的办法解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以 P(A)=41369要“玩”出水平 做一做做一做P164w

13、“配紫色”游戏w小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.w(1)利用列表的方法表示游戏者所有可能出现的结果.w(2)游戏者获胜的概率是多少?红白黄蓝绿A盘B盘真知灼见源于实践 想一想想一想w表格可以是:w“配紫色”游戏w游戏者获胜的概率是1/6.第二个第二个转盘转盘第一个第一个转盘转盘黄蓝绿红(红,黄)(红,蓝)(红,绿)白(白,黄)(白,蓝)(白,绿)红白黄蓝绿A盘B盘小明是个小马虎,晚上睡觉时将两双不同的袜子

14、放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少? 练习练习第一次所选袜子第二次所选袜子所有可能结果A1A2B1B2A1A2B1B2第一次所选袜子第二次所选袜子所有可能结果A1A2B1B2A1A2B1B2(A1,A2)(A1,B1) (A1,B2)(A2,A1)(A2,B1) (A2,B2)(B1,A1)(B1,A2)(B1,B2)(B2,A1)(B2,A2) (B2,B1)用表格求所有可能结果时,你可要特别谨慎哦课堂小结3、列举法求概率:(1).有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题的数目. (2)利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图等. 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况 另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n 在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点:课堂小结/10/2929.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(用列举法求概率(1直接列举法-列表法)课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|