1、l因素模型是一种生成资产期望收益率的统计模型,试图找因素模型是一种生成资产期望收益率的统计模型,试图找出影响所有资产收益率的共同因素。出影响所有资产收益率的共同因素。l因素模型认为各个资产收益率之间之所以存在一定的相关因素模型认为各个资产收益率之间之所以存在一定的相关性,是因为它们受到一个或多个共同的因素的影响;性,是因为它们受到一个或多个共同的因素的影响;l单个资产收益率不能被共同因素所解释的部分,被认为是单个资产收益率不能被共同因素所解释的部分,被认为是该种资产的个性,与其他资产的个性无关。该种资产的个性,与其他资产的个性无关。l因素模型通过找出影响所有资产收益率的共同因素,并利因素模型通
2、过找出影响所有资产收益率的共同因素,并利用一种线性结构方程来描述这些因素对各种资产收益率的用一种线性结构方程来描述这些因素对各种资产收益率的影响。影响。l在清楚各资产收益率与这些共同影响因素之间的关系后,在清楚各资产收益率与这些共同影响因素之间的关系后,根据因素的预测值和方差,就可以估计出资产组合的期望根据因素的预测值和方差,就可以估计出资产组合的期望收益率和方差,进而可以简便地确定最优投资组合。收益率和方差,进而可以简便地确定最优投资组合。第一节第一节 单因素模型单因素模型 l所谓单因素模型是指资产之间的相关性是由一个共同因素所谓单因素模型是指资产之间的相关性是由一个共同因素所引起的。所引起
3、的。l则各个资产的收益率可以由以下模型来描述:则各个资产的收益率可以由以下模型来描述: (8-1) 这一模型称为单因素模型,其中这一模型称为单因素模型,其中 表示资产表示资产 在在 期的实际收期的实际收益率;益率; 为常数(零因素值);为常数(零因素值); 为资产为资产 对因素对因素 的敏感性的敏感性; 为为 期的因素值;期的因素值; 表示资产表示资产 在在 期的残差项。期的残差项。itiititrabFitrtiaibiFtFtititl单因素可以是某一种对所有资产影响较大的因素,如单因素可以是某一种对所有资产影响较大的因素,如GDP、市场利率等。、市场利率等。il当当 期的因素值为期的因素
4、值为0时,资产时,资产 的收益率就等于的收益率就等于 。l由于因素模型假设资产收益率不能被因子解释的部分是该由于因素模型假设资产收益率不能被因子解释的部分是该资产的个性部分,因此资产的个性部分,因此 与与 是不相关的。是不相关的。l 通常表示为除通常表示为除 因素之外的比较次要又难量化的一切因因素之外的比较次要又难量化的一切因素;模型中常假设素;模型中常假设 是一个零均值,标准差为是一个零均值,标准差为 的随机的随机变量。变量。tiiitaittFitFitil由单因素模型可以得到资产的期望收益率、方差和协方差由单因素模型可以得到资产的期望收益率、方差和协方差为:为: (1)期望收益率)期望收
5、益率 (8-4) (2)方差)方差 (8-5) (3)协方差)协方差 (8-6) 其中其中 表示因素的预期值;表示因素的预期值; 是因素是因素 的方差;的方差; 是随是随机误差项机误差项 的方差;的方差; 表示任意两个资产表示任意两个资产 和和 之间的协之间的协方差;方差; 为为 资产对因素资产对因素 的敏感性。的敏感性。 iiiE rabE F2222iiiFb2ijijFbb E F2FF2iiijijjbjFl单因素模型极大地简化了资产的期望收益率、方差及资产单因素模型极大地简化了资产的期望收益率、方差及资产间的协方差的计算。间的协方差的计算。l在完成这些计算后,可按照马克维茨模型确定有
6、效边界,在完成这些计算后,可按照马克维茨模型确定有效边界,然后,投资者可以根据个人的无差异曲线,确定最优投资然后,投资者可以根据个人的无差异曲线,确定最优投资组合。组合。第二节第二节 多因素模型多因素模型 l通常,资产价格或收益率的变化不会仅仅受一个因素的影通常,资产价格或收益率的变化不会仅仅受一个因素的影响,通常影响因素很多,除了响,通常影响因素很多,除了GDP的预期增长率之外,还的预期增长率之外,还有银行存款利率、汇率、国债价格等影响因素。有银行存款利率、汇率、国债价格等影响因素。l当一个因素不足以解释资产的收益率以及各资产收益率之当一个因素不足以解释资产的收益率以及各资产收益率之间的相关
7、性时,考虑不同的影响因素,可以大大提高模型间的相关性时,考虑不同的影响因素,可以大大提高模型的准确度。的准确度。l这样因素模型就从单因素模型扩展到多因素模型。这样因素模型就从单因素模型扩展到多因素模型。 l单因素可以是某一种对所有资产影响较大的因素,如单因素可以是某一种对所有资产影响较大的因素,如GDP、市场利率等。、市场利率等。l多因素模型中最简单的就是双因素模型,即假设资产的收多因素模型中最简单的就是双因素模型,即假设资产的收益率普遍受到两个因素和的影响,可以建立双因素模型来益率普遍受到两个因素和的影响,可以建立双因素模型来描述资产收益率的生成过程:描述资产收益率的生成过程: (8-7)
8、其中,其中, 和和 是两个对资产回报率具有普遍性影响的因素是两个对资产回报率具有普遍性影响的因素; 和和 分别是资产分别是资产 对两个因素的敏感性;对两个因素的敏感性; 是随机是随机误差项,误差项, 是当两个因素都取是当两个因素都取0时资产的预期回报率。时资产的预期回报率。 双因素模型 1122itiitititrab Fb F1tF2tF1 ib2ibiitial在利用双因素模型估计各资产的期望收益率、方差、协方在利用双因素模型估计各资产的期望收益率、方差、协方差需要先估计以下参数和变量:差需要先估计以下参数和变量:(1)因素模型的参数)因素模型的参数 、 、 ;(2)随机误差的标准差)随机
9、误差的标准差 或方差或方差 ;(3)因素的预期值()因素的预期值( 和和 )以及因素的方差)以及因素的方差 ( 和和 ););(4)两个因素的协方差)两个因素的协方差 。ia1 ib2ibi2i1E F2E F12F22F12,F Fl在估计出以上参数和变量后,就可以计算出各资产的期望在估计出以上参数和变量后,就可以计算出各资产的期望收益率、方差和协方差:收益率、方差和协方差: (1)期望收益率)期望收益率 (8-8) (2)方差)方差 (8-9) (3)协方差)协方差 (8-10) 公式(公式(8-9)和()和(8-10)的证明可参见()的证明可参见(8-5)和()和(8-6)的证明。和单因
10、素模型一样,一旦完成上述计算,就可以的证明。和单因素模型一样,一旦完成上述计算,就可以导出马克维茨模型中的有效边界,再根据投资者的无差异导出马克维茨模型中的有效边界,再根据投资者的无差异曲线就可以确定投资者的最优投资组合。曲线就可以确定投资者的最优投资组合。 1122iiiiE rab E Fb E F12122222221212,2iiiFiFiiF Fbbb b12122211221221,ijijFijFijijF Fb bb bb bb b第三节第三节 市场模型市场模型 l市场模型是单因素模型的一个特例,又称为指数模型,该市场模型是单因素模型的一个特例,又称为指数模型,该模型中,因素为
11、市场指数的收益率,表达式为:模型中,因素为市场指数的收益率,表达式为: (8-178-17) 其中,其中, 表示资产表示资产 在在 期的回报率;期的回报率; 表示市场指数表示市场指数 在在 期的回报率;期的回报率; 表示跟因素无关的收益率,是截距;表示跟因素无关的收益率,是截距; 表示资产表示资产 对市场指数对市场指数 的敏感性,是斜率;的敏感性,是斜率; 是随机是随机误差项。误差项。 ititii ItitrabritrItrItiiiIitl由市场模型同样可以得到资产的期望收益率、方差和协方由市场模型同样可以得到资产的期望收益率、方差和协方差为:差为: (1)期望收益率)期望收益率 (8-
12、18) (2)方差)方差 (8-19) (3)协方差)协方差 (8-20) iiiIE rbbE r2222iiiIb2ijijFb 第四节 因素风险和非因素风险 l在因素模型下,资产或资产组合的总风险可以分解成因素风在因素模型下,资产或资产组合的总风险可以分解成因素风险和非因素风险。险和非因素风险。l投资分散化的结果是因素风险趋于平均化,非因素风险将不投资分散化的结果是因素风险趋于平均化,非因素风险将不断减少而趋于断减少而趋于0 0。l因素风险与系统风险类似,非因素风险与非系统风险类似。因素风险与系统风险类似,非因素风险与非系统风险类似。l以单因素为例,来分析资产的风险构成。以单因素为例,来
13、分析资产的风险构成。l如(如(8-58-5)式,资产)式,资产 的总风险拆成两个部分:因素风险的总风险拆成两个部分:因素风险 ( ),即跟因素),即跟因素 相关的风险;非因素风险(相关的风险;非因素风险( ),),即资产即资产 的个别风险,用随机误差项的个别风险,用随机误差项 的方差来测度:的方差来测度: (8-58-5)单个资产的因素风险和非因素风险 ii22iFbF2iit2222iiiFbl根据单因素模型,根据单因素模型, 种资产的收益率可以表示为:种资产的收益率可以表示为: (8-228-22)l假设某投资组合假设某投资组合 中,中, 种资产的投资权重分别是种资产的投资权重分别是 ,则
14、投资组合的收益率可以表示为:则投资组合的收益率可以表示为: (8-238-23)资产组合的因素风险和非因素风险 n11112222ttttttntnntntrab Frab Frab FPn12n1nPi iirrl将(将(8-228-22)代入()代入(8-238-23),可以得到资产组合的单因素模型),可以得到资产组合的单因素模型: (8-248-24) 其中,其中, , , 。可以看出资产组合的。可以看出资产组合的截距(截距( )、敏感性()、敏感性( )和随机误差项()和随机误差项( )分别是)分别是各资产的截距(各资产的截距( )、敏感性()、敏感性( )和随机误差项()和随机误差项
15、( )的加权平均,权重等于各资产在组合中的投资权重。)的加权平均,权重等于各资产在组合中的投资权重。 1111nPiiiiinnniiiiiiiiiPPPrabFabFab F1nPiiiaa1nPiiibb1nPiiiPaPbPiaibil资产组合的总风险用其收益率的方差来表示为:资产组合的总风险用其收益率的方差来表示为: (8-258-25) 其中,其中, 。 l由于因素模型假设任意两种资产的随机误差之间不相关,则由于因素模型假设任意两种资产的随机误差之间不相关,则资产组合的随机误差项的方差可以表示为:资产组合的随机误差项的方差可以表示为: (8-268-26) 式(式(8-258-25)
16、表明,任何资产组合的总风险()表明,任何资产组合的总风险( )可以)可以看成由两个部分构成:资产组合的因素风险(看成由两个部分构成:资产组合的因素风险( ),资),资产组合的非因素风险(产组合的非因素风险( )。)。 2222PPPFb221nPiiibb2221Pinii 2P22PFb2Pl随着组合中资产更加分散时(即资产的数量随着组合中资产更加分散时(即资产的数量 更大,权重更大,权重 更小),资产组合的因素风险趋于平均化,但非因素风更小),资产组合的因素风险趋于平均化,但非因素风险则趋近于险则趋近于0 0。 也就是说资产组合分散掉的是非因素风险,而不是因素风险也就是说资产组合分散掉的是
17、非因素风险,而不是因素风险l对于因素风险,由于资产组合的对于因素风险,由于资产组合的 是组合中各资产是组合中各资产 的加的加权平均,没有理由认为增加分散性会显著减小或增大权平均,没有理由认为增加分散性会显著减小或增大 的值的值,从而减小或增大资产组合的因素风险(,从而减小或增大资产组合的因素风险( )。)。 l例如,由于经济前景好时,大多数股票价格上涨,反之经济例如,由于经济前景好时,大多数股票价格上涨,反之经济前景不好时,大多数股票价格下跌,因此不管分散化程度如前景不好时,大多数股票价格下跌,因此不管分散化程度如何,经济前景对股票组合的影响依然存在;何,经济前景对股票组合的影响依然存在;l只
18、是随着分散化程度的增加,股票组合更接近市场组合,其只是随着分散化程度的增加,股票组合更接近市场组合,其因素风险也更接近市场平均的因素风险。因素风险也更接近市场平均的因素风险。风险分散效应 niPbibPb22PFbl但随着分散化程度增加,资产组合中各资产的个别风险(即但随着分散化程度增加,资产组合中各资产的个别风险(即,非因素风险)对资产组合的影响越来越小,得以分散。,非因素风险)对资产组合的影响越来越小,得以分散。l如浦发银行董事会改选,可能会影响浦发银行股票的走势,如浦发银行董事会改选,可能会影响浦发银行股票的走势,但基本上不影响资产组合中其他资产的价格走势;但基本上不影响资产组合中其他资
19、产的价格走势;l随着组合中资产数量增加,浦发银行股票在资产组合中的权随着组合中资产数量增加,浦发银行股票在资产组合中的权重减小,浦发银行董事会改选对整个资产组合的价格走势来重减小,浦发银行董事会改选对整个资产组合的价格走势来说,影响越来越小。说,影响越来越小。l非因素风险的分散效应也可以通过如下证明来体现。非因素风险的分散效应也可以通过如下证明来体现。l考虑如下情形:(考虑如下情形:(1 1)投资者等权重地投资于)投资者等权重地投资于 个资产,即个资产,即每个资产的投资比重每个资产的投资比重 都等于都等于 ;(;(2 2)每个资产的非因)每个资产的非因素风险相等,即素风险相等,即 。l则资产组
20、合的非因素风险等于:则资产组合的非因素风险等于: (8-278-27)l随着随着 趋向于趋向于 ,则资产组合的非因素风险,则资产组合的非因素风险 则趋向于则趋向于0 0,即分散化能降低非因素风险。,即分散化能降低非因素风险。ni1n12222n2222111Piininnn2Pl在市场模型中单个资产的总风险(在市场模型中单个资产的总风险( )同样也可以拆成两)同样也可以拆成两个部分:因素风险(个部分:因素风险( )和非因素风险()和非因素风险( )。由于)。由于市场模型中因素即为市场指数,因此因素风险又称为市场风市场模型中因素即为市场指数,因此因素风险又称为市场风险或系统风险,非因素风险也常被
21、称为个别风险或非系统风险或系统风险,非因素风险也常被称为个别风险或非系统风险:险: (8-288-28)市场模型中的风险分散效应2i22iIb2i2222iiiIbl同样,在市场模型中,资产组合的总风险(同样,在市场模型中,资产组合的总风险( )同样可以)同样可以拆成两个部分:市场风险(拆成两个部分:市场风险( )和个别风险()和个别风险( ):): (8-298-29) 其中,其中, , 2P22PIb2P2222PPPIb221nPiiibb2221Pinii l同样,在市场模型中,随着资产的分散化程度增加,资产组同样,在市场模型中,随着资产的分散化程度增加,资产组合的市场风险趋于平均化,
22、资产组合的个别风险则逐渐减小合的市场风险趋于平均化,资产组合的个别风险则逐渐减小。l一般而言,当资产的数量大于等于一般而言,当资产的数量大于等于3030,就可以认为资产组合,就可以认为资产组合的个别风险基本上接近于的个别风险基本上接近于0 0,资产组合的总风险近似等于市,资产组合的总风险近似等于市场风险。场风险。l图图8.38.3描述了资产的分散化如何导致个别风险的减少以及市描述了资产的分散化如何导致个别风险的减少以及市场风险的平均化。场风险的平均化。第五节 因素模型参数估计 l因素模型的估计方法一般可以归结为三类:时间序列法、横因素模型的估计方法一般可以归结为三类:时间序列法、横截面法、因素
23、分析法。这里只介绍时间序列法。截面法、因素分析法。这里只介绍时间序列法。l时间序列法是用时间序列数据去估计因素模型中参数。时间序列法是用时间序列数据去估计因素模型中参数。l时间序列法的前提是能收集到各期的因素值以及各期资产的时间序列法的前提是能收集到各期的因素值以及各期资产的收益率,这些数据称为时间序列数据,再利用回归技术计算收益率,这些数据称为时间序列数据,再利用回归技术计算因素模型中的截距以及各因素的敏感性。因素模型中的截距以及各因素的敏感性。第六节第六节 因素模型与资本资产定价模型比较因素模型与资本资产定价模型比较 l因素模型特别是单因素模型中的市场模型和资本资产定价模因素模型特别是单因
24、素模型中的市场模型和资本资产定价模型(型(CAPMCAPM)在表达式上有些类似:)在表达式上有些类似: (8-188-18) (7-97-9)l因素模型和资本资产定价模型有本质的不同。因素模型和资本资产定价模型有本质的不同。l资本资产定价模型是均衡模型,因素模型是非均衡模型。资本资产定价模型是均衡模型,因素模型是非均衡模型。l在资本资产定价模型中只有一个参数,任何资产所面对的无在资本资产定价模型中只有一个参数,任何资产所面对的无风险利率都是一样的,只要相同,它们的收益率也相同,是风险利率都是一样的,只要相同,它们的收益率也相同,是均衡状态。但在单因素模型中参数有两个和,每个资产的是均衡状态。但
25、在单因素模型中参数有两个和,每个资产的是不一样的,即使他们的相同,其收益率也不会相同,因此是不一样的,即使他们的相同,其收益率也不会相同,因此是不均衡的,存在套利机会。不均衡的,存在套利机会。 iiiIE rabE r ifMfiE rrE rrl要使得市场模型和资本资产定价模型一致,必须要保证指数要使得市场模型和资本资产定价模型一致,必须要保证指数就是市场组合,此时有:就是市场组合,此时有:l由于市场组合由于市场组合 很难找到,求解资本资产定价模型中的很难找到,求解资本资产定价模型中的 常常退而求其次之,采用因素模型的方法进行求解,但是前常常退而求其次之,采用因素模型的方法进行求解,但是前提是所选用的指数要尽量贴近市场组合。提是所选用的指数要尽量贴近市场组合。 1iifiiarbMi