1、数字逻辑1n本章是学习数字逻辑电路的基础,主要介绍数字逻辑电路中常用的几种数制的表示方法及其转换规律,数字系统中常见的几种编码及逻辑代数的基本理论和基础知识。 数字逻辑2数字逻辑3 1i1100112211101010.1010101010)(nmiimmnnnnDDDDDDDD式中Di取值范围为0 Di(R-1)。n为整数部分的位数,m为小数部分的位数。整数第i位的权是Ri-1 ,小数点后第m位的权是R-m。此式表示的就是各符号与其所在位权值乘积的代数和十进制数可用后缀D(Decimal)标识。数字逻辑4 1i1100112211222.22222)(nmiimmnnnnBBBBBBBB数字
2、逻辑5n二进制数可用后缀二进制数可用后缀B(Binary)标识。标识。n计算机和各种数字系统中采用二进制的原因主计算机和各种数字系统中采用二进制的原因主要有以下几点:要有以下几点: n 二进制只有二进制只有0和和1两种状态,显然制造具有两两种状态,显然制造具有两种状态的电子器件要比制造具有种状态的电子器件要比制造具有10种特定状态种特定状态的器件容易得多,并且由于状态简单,其工作的器件容易得多,并且由于状态简单,其工作更可靠,传输也不容易出错。更可靠,传输也不容易出错。n 0、1数码与逻辑代数变量值数码与逻辑代数变量值0与与1相符,利相符,利用二进制方便进行逻辑运算。用二进制方便进行逻辑运算。
3、n 二进制数和十进制数之间转换比较容易。二进制数和十进制数之间转换比较容易。数字逻辑6 n用二进制数表示一个较大的数时,比较冗长而又用二进制数表示一个较大的数时,比较冗长而又难以记忆,为了阅读和书写的方便,通常采用八难以记忆,为了阅读和书写的方便,通常采用八进制或十六进制。进制或十六进制。n1. 八进制数八进制数n八进制数由八进制数由0、1、2、3、4、5、6、7八个数码八个数码组成,其计数规则是逢八进一。基数为组成,其计数规则是逢八进一。基数为8,各位,各位的权值为的权值为8i 。任意一个八进制数可表示为:。任意一个八进制数可表示为:188)(nmiiiOO数字逻辑711616)(nmiii
4、HH数字逻辑81. 非十进制数转换成十进制数非十进制数转换成十进制数按相应的权表达式展开,再按十进制运算规则求和按权展开相加。【例例1-1】 将二进制数1011.11B转换成十进制数。(1011.11)2=123+022+121+120+12-1+12-2=8+0+2+1+0.5+0.25=(11.75)10数字逻辑9n【例例1-2】 将十六进制数AF7. 4H转换成十进制数。n(AF7. 4)16= A162+ F161+7160+416-1n =10256+1516+71+4/16n=(2807.25)10数字逻辑102. 十进制数转换成非十进制数十进制数转换成非十进制数十进制数转换为非十
5、进制数分为两个部分进行,整数部分和小数部分,分开转换后再以小数点为结合点组合起来。整数部分:除基数取余,直至商为0 ,余数按先后顺序从低位到高位排列除基数倒取余;小数部分:乘基取整,直至达到所要求的精度或小数部分为0 ,整数按先后顺利从高位到低位排列乘基数顺取整。数字逻辑11 因此,转换结果为:(25.8125)10=(a4 a3 a2 a1 a0 。a-1 a-2 a-3 a -4)2=(11001.1101)2数字逻辑12n【例例1-4】 将十进制数将十进制数301.6875转换为十六进制数。转换为十六进制数。数字逻辑13n3. 二进制数与十六进制、八进制数互换二进制数与十六进制、八进制数
6、互换n由于十六进制数的基数16是二进制数的基数2的4次幂,即24=16,1位十六进制数相当于4位二进制数。因此,十六进制数转换成二进制数时,只要将十六进制数的每一位改写成等值的4位二进制数,即“1位变4位”。数字逻辑14n【例例1-5】 把(A3D.8B)16转换为二进制数。n解: 可用“1位变4位”的方法:n A 3 D . 8 Bn n 1010 0011 1101 . 1000 1011 n (A3D.8B)16=(101000111101.10001011)2数字逻辑15n二进制数转换为十六进制数时,以小数点为分界线,整数部分从右向左每4位一组,小数部分从左向右每4位一组,不足4位用0
7、补足,每组改成等值的1位十六进制数即可,即“4位变1位”。数字逻辑16 数字逻辑17数字逻辑18表1-1给出了4位二进制数与其它进制数表示之间的对照关系。数字逻辑19数字逻辑20数字逻辑21 数字逻辑22nX0为符号位,若n=7,即字长8位,则:n X取值范围:-127+127n +0 =00000000n -0 =10000000n采用原码表示法简单易懂,但它最大缺点是加法运算电路复杂,不容易实现。数字逻辑23 数字逻辑24数字逻辑25 数字逻辑26数字逻辑27n【例例1-10】 若计算机字长8位,X=126,Y=-126,分别求出X和Y的原码、反码及补码。n解:X原=X反=X补=01111
8、110n Y原=11111110n Y反=10000001n Y补=10000010数字逻辑28n信息在计算机中的存储表现为数据。在计算机中,任何数据都只能采用二进制数的各种组合方式来表示,所以需要对信息中全部用到的字符按照一定的规则进行二进制数的组合编码。编码是指用文字、符号、数码等表示某种信息的过程。数字系统中处理、存储、传输的都是二进制代码0和1,因而对于来自于数字系统外部的输入信息,例如十进制数09或字符AZ,az,汉子等,必须用二进制代码0和1表示。二进制编码是给每个外部信息按一定规律赋予二进制代码的过程。数字逻辑29n二十进制码是一种用四位二进制码来表示一位十进制数的代码,简称为B
9、CD(Binary Coded Decimal Number)码。用四位二进制码来表示十进制数的10个数码有很多种编码方法,常见的有8421BCD码、2421BCD码、4221BCD码、5421BCD码和余3码等,表1.2给出了十进制数与这几种编码之间的对应关系。数字逻辑30n 表1-2 十进制数与各种BCD编码对照表数字逻辑31数字逻辑32n2. 余余3码码n余3码是由8421BCD码加3后得到的。在BCD码的算术运算中常采采用余3码。余3码的主要特点是其表示0和9的码组、1和8的码组、2和7的码组、3和6的码组以及4和5的码组之间互为反码。当两个用余3码表示的数相减时,可以将原码的减法改为
10、反码的加法。因为余3码求反容易,所以有利于简化BCD码的减法电路。数字逻辑33n3. 循环码循环码n循环码是格雷码(Gray Code)中常用的一种,其主要优点是相邻两组编码只有一位状态不同。以中间为对称的两组代码只有最左边一位不同。如果从纵向来看,循环码各组代码从右起第一位的循环周期是“0110”,第二位的循环周期是“00111100”,第三位的循环周期是“0000111111110000”等等。例如0和15,1和14,2和13等。这称为反射性。所以又称作反射码。而每一位代码从上到下的排列顺序都是以固定的周期进行循环的。表1-3所示的是四位循环码。数字逻辑34n表1-3 四位循环码数字逻辑3
11、5n4. ASCII码码nASCII是American National Standard Code for Information Interchange美国国家信息交换标准代码的简称。常用于通讯设备和计算机中。它是一组八位二进制代码,用b0b6这七位二进制代码表示十进制数字、英文字母及专用符号。第八位b7作奇偶校验位(在机中常为0)。如表1-4所示。数字逻辑36nASCII包括10个十进制数码,26个英文字母和一些专用符号,总共128个字符,因此,只需要一个字节中的低7位编码,最高位可用作奇偶校验位,当最高位恒取1,称为标记校验,当最高位恒取0,称作空格校验。128个ASCII符中有95个
12、编码,它们分别对应计算机中在输入/输出终端设备上能键入和输出显示以及输出打印的95个字符,包括大小写英文字母,其余33个编码,其编码值为031和127,则不对应任何显示与打印实际字符,它们被用作为控制码,控制计算机I/O设备的操作以及计算机软件的执行情况。 数字逻辑37n逻辑代数又称布尔代数,是19世纪中叶英国数学家乔治.布尔(George.Boole)首先提出来的。它是分析和设计数字逻辑电路的数学工具。本节主要介绍逻辑变量、逻辑函数、基本逻辑运算和逻辑代数公式,以及化简逻辑函数的两种方法:公式法和卡诺图法。数字逻辑38n逻辑代数是用来处理逻辑运算的代数。参与逻辑运算的变量称为逻辑变量, 用字
13、母来表示。逻辑变量的取值只有0,1两种, 而且在逻辑运算中0和1不再表示具体数量的大小, 而只是表示两种不同的状态。逻辑函数是由若干逻辑变量A、B、C、D 经过有限的逻辑运算所决定的输出F,即逻辑函数可表示为:F=f(A、B、C)。数字逻辑39n1. 逻辑值的概念逻辑值的概念n在计算机和数字系统中,通常用“逻辑真”和“逻辑假”来区分事物的两种对立的状态。“逻辑真”用1表示;“逻辑假”用0来表示。1和0分别叫做逻辑真/假状态的值。这里,0、1只有逻辑上的含义,已不再表示数量上的大小。数字逻辑40n2. 高、低电平的概念高、低电平的概念n以两个不同确定范围的电位与逻辑真、假两个逻辑状态对应。n这两
14、个不同范围的电位称作逻辑电平,把其中一个相对电位较高者称为逻辑高电平,简称高电平,用H表示。而相对较低者称为逻辑低电平,简称低电平,用L表示 数字逻辑41n3. 状态赋值和正、负逻辑的概念状态赋值和正、负逻辑的概念n状态赋值状态赋值:数字电路中,经常用符号1和0表示高电平和低电平。我们把用符号1、0表示输入、输出电平高低的过程叫做状态赋值。n正逻辑正逻辑:在状态赋值时,如果用1表示高电平,用0表示低电平,则称为正逻辑赋值,简称正逻辑。n负逻辑负逻辑:在状态赋值时,如果用0表示高电平,用1表示低电平,则称为负逻辑赋值,简称负逻辑。数字逻辑42n逻辑代数中的逻辑运算只有“与”、“或”、“非”三种基
15、本逻辑运算。任何复杂的逻辑运算都可以通过这三种基本逻辑运算来实现。数字逻辑43n1. 逻辑与运算逻辑与运算n与逻辑运算又叫逻辑乘。其定义是:当且仅当决定事件F发生的各种条件A、B、C 均具备时,这件事才发生, 这种因果关系称为“与”逻辑关系, 即“与”逻辑运算。n两个变量的”与”运算的逻辑关系可以用函数式表示为:nF = AB = A Bn与运算的规则为:n00=0 01=0 10=0 11=1数字逻辑44n“与”运算的真值表如表1-5所示。n “与”逻辑运算可以进行这样的逻辑判断:“与”门的输入信号中是否有“0”, 若输入有“0”,输出就是“0”,只有当输入全为“1”, 输出才是“1”。 数
16、字逻辑45n2. 逻辑或运算逻辑或运算n“或”逻辑运算又叫逻辑加。其定义是:在决定事件F发生的各种条件中只要有一个或一个以上条件具备时, 这件事就发生, 这种因果关系称为“或”逻辑运算关系。n两个变量的“或”运算可以用函数式表示为:nF = A + B n或运算的规则为:n0+0=0 0+1=1 1+0=1 1+1=1数字逻辑46n“或”逻辑运算可以进行这样的逻辑判断:“或”门的输入信号中是否有“1”,若输入有“1”, 输出就是“1”;只有当输入全为“0”时, 输出才是“0”。数字逻辑47n3. 逻辑非运算逻辑非运算n“非”逻辑运算又称“反相” 运算, 或称“求补”运算。其定义是:当决定事件发
17、生的条件A具备时, 事件F不发生; 条件A不具备时, 事件F才发生。这种因果关系叫“非”逻辑运算。它的函数式为n F = n非运算的规则为:n A10 01 数字逻辑48n4. 复合逻辑运算复合逻辑运算n与、或、非为三种基本逻辑运算。实际逻辑问题要比与、或、非复杂得多,但不管如何复杂都可以用简单的与、或、非逻辑组合来实现,从而构成复合逻辑逻辑。n复合逻辑常见的有与非、或非、异或、同或及与或非运算等。数字逻辑49n(1) 与非逻辑运算与非逻辑运算n实现先“与”后“非”的逻辑运算就是与非逻辑运算。其逻辑函数式如下:nABF 数字逻辑50n“与非”运算的真值表如表1-8所示。n“与非”逻辑运算可进行
18、这样的逻辑判断:“与非”门输入信号中是否有“0”, 输入有“0”, 输出就是“1”;只有当输入全为“1”时, 输出才是“0”。数字逻辑51n(2) 或非逻辑运算或非逻辑运算n实现先“或”后“非”的逻辑运算, 就是“或非”逻辑运算。其逻辑函数式如下:nBAF数字逻辑52n“异或”逻辑运算可以进行这样的逻辑判断:“异或”门的两个输入信号是否相同, 若两个输入信号相同时, 输出为“0”;若 两个输入信号不相同时,输出为“1”。“异或”逻辑运算的结果与输入变量取值为0的个数无关; 与输入变量取值为1的个数有关。变量取值为1的个数为奇数, 则输出为1; 变量取值为1的个数为偶数, 则输出为0。数字逻辑5
19、3n(3) 异或逻辑运算异或逻辑运算 n用先“非”再“与”后“或”的逻辑运算,实现如下逻辑函数式的称为“异或”逻辑运算。其逻辑函数式如下:BABABA F数字逻辑54n(4) 同或逻辑运算同或逻辑运算 n同或即异或非。同或逻辑函数式如下:n =A Bn同或门的逻辑符号如图1-7。n“同或”运算的真值表所表1-11所示。BABAF数字逻辑55n对于“同或”逻辑来说, 它的输出结果与变量值为1的个数无关, 而和变量值为0的个数有关。变量值为0的个数为偶数时, 则输出为1; 变量值为0的个数为奇数时, 则输出为0。数字逻辑56n1. 基本公式基本公式数字逻辑57n在逻辑代数中,利用代入规则、对偶规则
20、、反演规则可由基本定律推导出更多的公式。n(1) 代入规则代入规则n 在任何一个逻辑等式中,如将等式两边所有出现某一变量的地方都用同一函数式替代,则等式仍然成立。这个规则就是代入规则。n 代入规则扩大了逻辑等式的应用范围。n 例如CBACBACBA数字逻辑58n(2) 对偶规则对偶规则n将某一逻辑表达式中的“”换成“+”、“+”换成“”;“0”换成“1”,“1”换成“0”,就得到一个新的表达式。这个新的表达式就是原表达式的对偶式。如果两个逻辑式相等,则它们的对偶式也相等。这就是对偶规则。n(3) 反演规则反演规则n如将某一逻辑式中的“”换成“+”、“+”换成“” ;“0”换成“1”,“1”换成
21、“0” ;原变量换成反变量,反变量换成原变量,则所得到的逻辑表达式称为原式的反演式。这种变换方法称为反演规则。利用反演规则可以比较容易地求出一个函数的反函数。 数字逻辑59n在处理逻辑问题时,可用多种方法来表示逻辑函数,其常用表示方法有逻辑表达式、真值表、逻辑图、卡诺图、波形图和VHDL语言。n逻辑表达式是由逻辑变量和“与”、“或”、“非”三种逻辑运算符号构成的式子。同一个逻辑函数可以有不同的逻辑表达式, 它们之间是可以相互转换的。数字逻辑60n例如:如图1-8所示电路图,只有在A闭合的情况下,B或者C闭合,指示灯才会亮。BC中至少有一个合上,则表示为B+C,同时A必须闭合,则表示为(B+C)
22、A,所以得到逻辑函数式为:Y=A(B+C)。逻辑函数式简洁方便,而且能高度抽象而且概括地表示各个变量之间的逻辑关系;便于利用逻辑代数的公式和定理进行运算、变换;便于利用逻辑图实现函数;缺点是难以直接从变量取值看出函数的值,不如真值表直观。数字逻辑61n2. 真值表真值表n真值表是由逻辑函数输入变量的所有可能取值组合及其对应的输出函数值所构成的表格。n个输入变量有2n种取值组合, 在列真值表时, 为避免遗漏和重复, 变量取值按二进制数递增规律排列。一个逻辑函数的真值表是惟一的。n以图1-8为例,得到的真值表为:表1-12 图1-8为例运算的真值表A B CY0 0 000 0 100 1 000
23、 1 101 0 001 0 111 1 011 1 11数字逻辑62n3. 逻辑图逻辑图n将逻辑表达式中的逻辑运算关系, 用对应的逻辑符号表示出来,就构成函数的逻辑图。逻辑图只反映电路的逻辑功能,而不反映电器性能。例如为了画出图1.8的逻辑图,只要用逻辑运算的图形符号代替式Y=A(B+C)的代数符号便可得到图1-9表示的逻辑图。数字逻辑63n1. 最小项最小项n如果一个具有n个变量的逻辑函数的“与项”包含全部n个变量,每个变量以原变量或反变量的形式出现,且仅出现一次,则这种“与项”被称为最小项。n对两个变量A、B来说,可以构成四个最小项:;对三个变量A、B、C来说,可构成八个最小项:、ABC
24、;同理,对n个变量来说,可以构成2 n个最小项。数字逻辑64n为了叙述和书写方便,最小项通常用符号mi表示,i是最小项的编号,是一个十进制数。确定i的方法是:首先将最小项中的变量按顺序A、B、C、D 排列好,然后将最小项中的原变量用1表示,反变量用0表示,这时最小项表示的二进制数对应的十进制数就是该最小项的编号。例如,对三变量的最小项来说,ABC的编号是7符号用m7表示,的编号是5符号用m5表示。数字逻辑65n2. 最小项表达式最小项表达式n如果一个逻辑函数表达式是由最小项构成的与或式,则这种表达式称为逻辑函数的最小项表达式,也叫“标准与或式”。例如:n是一个四变量的最小项表达式。n对一个最小
25、项表达式可以采用简写的方式,例如:)752( m ),(752, , mmmABCCBACBACBAF要写出一个逻辑函数的最小项表达式,可以有多种方法,但最简单的方法是先给出逻辑函数的真值表,将真值表中能使逻辑函数取值为1的各个最小项相或就可以了。 数字逻辑66n一个具体问题经过逻辑抽象得到的逻辑函数表达式,不一定是最简单的逻辑表达式。同一个逻辑函数可以写成不同的逻辑表达式,这些逻辑表达式的繁简程度往往相差甚远。逻辑表达式简单,说明逻辑关系简单,用最少的电子器件就可以实现这个逻辑关系。因此,通常必须对逻辑函数表达式进行化简。n所谓逻辑函数的化简,通常是指将逻辑函数化成最简的与-或表达式。若函数
26、中的乘积项最少,且每个与项中的变量最少,则称此函数式为最简与或式。数字逻辑67n1. 代数化简法代数化简法n(1) 并项法并项法n利用公式 将两项合并为一项,并且消去一个变量。例如:ABAABCCBACBACBACBACBCACBAF)(数字逻辑68n(2) 吸收法吸收法n利用公式A+AB=A,消去AB项。例如:n(3) 消去法消去法n利用公式 ,消去项中的,例如:nF= BABAACABCABABCBAABCBCAAB)(数字逻辑69n(4) 配项法配项法n利用 ,给某一个与项配项,试探并进一步化简。例如 :1 AACBCABAACBBBCACBABACBBACBAACBCCBABACBCB
27、BA )1( )( )1( C B ACBACBABCA )( )( F数字逻辑70n2. 卡诺图法化简逻辑函数卡诺图法化简逻辑函数n采用逻辑代数法化简,不仅要求熟练掌握逻辑代数的定律和公式,且需具有较强的化简技巧。卡诺图化简法简单、直观、有规律可循,当变量较少时,用来化简逻辑函数是十分方便的。 卡诺图其实质是真值表的一种特殊排列形式,二至四变量的卡诺图如图1-10至图1-12所示 。n个变量的逻辑函数有2n个最小项,每个最小项对应一个小方格,所以,n个变量的卡诺图由2n个小方格构成,这些小方格按一定的规则排列。数字逻辑71n在图1-10卡诺图的上边线,用来表示小方格的列,第一列小方格表示A的
28、非,第二列小方格表示A;变量B为另一组,表示在卡诺图的左边线,用来表示小方格的行,第一行小方格表示B的非,第二行小方格表示B。如果原变量用1表示,反变量用0表示,在卡诺图上行和列的交叉处的小方格就是输入变量取值对应的最小项。如每个最小项用符号表示,则卡诺图如图1-10(b)所示,最小项也可以简写成编号,如图1-10(c)所示 图1-10 二变量卡诺图数字逻辑72n分析卡诺图可看出它有以下两个特点:n 相邻小方格和轴对称小方格中的最小项只有一个因子不同,这种最小项称为逻辑相邻最小项;n 合并2k个逻辑相邻最小项,可以消去k个逻辑变量。图1-11 三变量卡诺图数字逻辑73n2) 逻辑函数的卡诺图表
29、示逻辑函数的卡诺图表示n用卡诺图表示逻辑函数时,可分以下几种情况考虑。n 利用真值表画出卡诺图n如果已知逻辑函数的真值表,画出卡诺图是十分容易的。对应逻辑变量取值的组合,函数值为1时,在小方格内填1;函数值为0时,在小方格内填0(也可以不填)。例如逻辑函数F1的真值表如表1-14所示,其对应的卡诺图如图1-13所示。数字逻辑74n 利用最小项表达式画出卡诺图n当逻辑函数是以最小项形式给出时,可以直接将最小项对应的卡诺图小方格填1,其余的填0。这是因为任何一个逻辑函数等于其卡诺图上填1的最小项之和。例如对四变量的逻辑函数:)15,13,10,7,5,0(2 m F 数字逻辑75n 通过一般与或式
30、画出卡诺图n有时逻辑函数是以一般与或式形式给出,在这种情况下画卡诺图时,可以将每个与项覆盖的最小项对应的小方格填1,重复覆盖时,只填一次就可以了。对那些与项没覆盖的最小项对应的小方格填0或者不填。n如果逻辑函数以其他表达式形式给出,如或与式、与或非、或与非形式,或者是多种形式的混合表达式,这时可将表达式变换成与或式再画卡诺图,也可以写出表达式的真值表,利用真值表再画出卡诺图。数字逻辑76n(3) 用卡诺图化简逻辑函数的方法用卡诺图化简逻辑函数的方法n用卡诺图表示出逻辑函数后,化简可分成二步进行:n第一步:将填1的逻辑相邻小方格圈起来,称为画卡诺圈。n第二步:合并卡诺圈内那些填1的逻辑相邻小方格
31、代表的最小项,并写出最简的逻辑表达式。数字逻辑77n画卡诺圈时应注意以下几点: n 卡诺圈内填1的逻辑相邻小方格应是2k,即应是偶数个。n 填1的小方格可以处在多个卡诺圈中,但每个卡诺圈中至少要有一个填1的小方格在其它卡诺圈中没有出现过。数字逻辑78n 为了保证能写出最简单的与或表达式,首先应保证卡诺圈的个数最少(表达式中的与项最少),其次是每个卡诺圈中填1的小方格最多(与项中的变量最少)。由于卡诺圈的画法在某些情况下不是唯一的,因此写出的最简逻辑表达式也不是唯一的。n 如果一个填1的小方格不和任何其它填1的小方格相邻,这个小方格也要用一个与项表示,最后将所有的与项或起来就是化简后的逻辑表达式
32、。数字逻辑79n(4) 用卡诺图化简逻辑函数举例用卡诺图化简逻辑函数举例n【例例1-16】 已知逻辑函数的真值表如表1-15所示,写出逻辑函数的最简与或表达式。n解:首先根据真值表画出卡诺图,将填有1并具有相邻关系的小方格圈起来,如图1-16所示,根据卡诺图可写出最简与或表达式: CBCAF数字逻辑80n(5) 包含无关项的逻辑函数的化简图包含无关项的逻辑函数的化简图1-18【例例1-18】的卡诺图的卡诺图n对一个逻辑函数来说,如果针对逻辑变量的每一组取值,逻辑函数都有一个确定的值相对应,则这类逻辑函数称为完全描述逻辑函数。但是,从某些实际问题归纳出的逻辑函数,输入变量的某些取值对应的最小项不
33、会出现或不允许出现,也就是说,这些输入变量之间存在一定的约束条件。数字逻辑81n那么,这些不会出现或不允许出现的最小项称为约束项,其值恒为0。还有一些最小项,无论取值0还是取值1,对逻辑函数代表的功能都不会产生影响。那么,这些取值任意的最小项称为任意项。约束项和任意项统称无关项,包含无关项的逻辑函数称为非完全描述逻辑函数。无关最小项在逻辑表达式中用表示,在卡诺图上用“”或“”表示,化简时既可代表0,也可代表1。n在化简包含无关项的逻辑函数时,由于无关项可以加进去,也可以去掉,都不会对逻辑函数的功能产生影响,因此利用无关项就可能进一步化简逻辑函数。数字逻辑82n本章主要介绍了数制、常用编码及逻辑
34、代数的基本章主要介绍了数制、常用编码及逻辑代数的基本知识。本知识。n在计算机和各种数字系统中,常用按一定规则排在计算机和各种数字系统中,常用按一定规则排列起来的二进制数码表示数字、符号和汉字等。列起来的二进制数码表示数字、符号和汉字等。因此,数制和编码是学习计算机系统非常重要的因此,数制和编码是学习计算机系统非常重要的基础知识。基础知识。n逻辑函数可以有多种表示方法,如逻辑函数表达逻辑函数可以有多种表示方法,如逻辑函数表达式、真值表、电路图、卡诺图、波形图和式、真值表、电路图、卡诺图、波形图和VHDL语言,这些表示方式是可以相互转换。语言,这些表示方式是可以相互转换。数字逻辑83n逻辑函数化简
35、的方法有两种,公式法(代数法)逻辑函数化简的方法有两种,公式法(代数法)和卡诺图法。公式法的优点是不受逻辑变量个数和卡诺图法。公式法的优点是不受逻辑变量个数的限制,但这种方法没有固定的方法步骤可循,的限制,但这种方法没有固定的方法步骤可循,严重依赖于对各种公式和定理的熟练掌握和运用。严重依赖于对各种公式和定理的熟练掌握和运用。卡诺图化简法的优点是化简步骤固定,方法简单、卡诺图化简法的优点是化简步骤固定,方法简单、直观,易于掌握,但对超过直观,易于掌握,但对超过5个逻辑变量的逻辑个逻辑变量的逻辑函数化简时就不太适用了。因此,在实际对逻辑函数化简时就不太适用了。因此,在实际对逻辑函数的化简时,可以先用公式法把逻辑变量减少函数的化简时,可以先用公式法把逻辑变量减少到最多到最多4个,然后再利用卡诺图进行化简。个,然后再利用卡诺图进行化简。