电化学与金属腐蚀课件.ppt

上传人(卖家):三亚风情 文档编号:2252020 上传时间:2022-03-26 格式:PPT 页数:79 大小:1.77MB
下载 相关 举报
电化学与金属腐蚀课件.ppt_第1页
第1页 / 共79页
电化学与金属腐蚀课件.ppt_第2页
第2页 / 共79页
电化学与金属腐蚀课件.ppt_第3页
第3页 / 共79页
电化学与金属腐蚀课件.ppt_第4页
第4页 / 共79页
电化学与金属腐蚀课件.ppt_第5页
第5页 / 共79页
点击查看更多>>
资源描述

1、首首 页页末末 页页下一页下一页上一页上一页1电化学与金属腐蚀电化学与金属腐蚀第4章首首 页页末末 页页下一页下一页上一页上一页2目录目录4.14.1 原电池原电池4.34.3 电极电势在化学上的应用电极电势在化学上的应用4.44.4 化学电源化学电源 4.54.5 电解电解4.64.6 金属的腐蚀与防止金属的腐蚀与防止 4.2 4.2 电极电势电极电势 首首 页页末末 页页下一页下一页上一页上一页34.1 原电池原电池4.1.1 4.1.1 原电池中的化学反应原电池中的化学反应 将氧化还原反应的化学能转变为电能的装置。将氧化还原反应的化学能转变为电能的装置。 正极反应:正极反应: Cu2+

2、+2e+2e- - Cu 负极反应:负极反应: Zn - 2e2e- - Z Zn2+ 电势电势: : Zn低低, Cu高高 电极名电极名: : Zn负负, Cu正正电池反应电池反应: Cu2+ZnZn2+Cu1、原电池组成与反应还原反应还原反应氧化反应氧化反应首首 页页末末 页页下一页下一页上一页上一页4原电池结构原电池结构盐桥的作用:盐桥的作用:盐桥是一倒插的U型管或其它装置,内含KCl或KNO3溶液,可用琼脂溶胶或多孔塞保护,使KCl或KNO3溶液不会自动流出。沟通电路,补充电荷、维持电荷平衡。K+首首 页页末末 页页下一页下一页上一页上一页52 若干概念若干概念(1)原电池是由两个半电

3、池组成的;半电池中的反应就是半反应,即电极反应。因此将半电池又叫电极。如:电池反应 Cu(s) + 2Ag+(aq) = Cu2+(aq) + 2Ag(s) 在负极负极上发生Cu的氧化反应: Cu(s)=Cu2+(aq)+2e- 在正极正极上发生Ag+的还原反应:2Ag+(aq)+2e-=2Ag(s) 对于自发进行的电池反应,都可以把它分成两个部分(相应于两个电极的反应),一个表示氧化剂的(被)还原,一个表示还原剂的(被)氧化。对于其中的任一部分称为原电池的半反半反应式应式。 首首 页页末末 页页下一页下一页上一页上一页6(2)(2)半反应(电极反应)涉及同一元素的氧化态和半反应(电极反应)涉

4、及同一元素的氧化态和还原态:还原态:a(氧化态氧化态) + neb( (还原态还原态) )从反应式可以看出,每一个电极反应中都有两类物质:一类是可作还原剂的物质,称为还原态物质,如上面所写的半反应中的Zn、Cu、Ag等;另一类是可作氧化剂的物质,称为氧化态物质,如Zn2+、Cu2+、Ag+等。 式中n是按所写电极反应中电子的化学计量数 首首 页页末末 页页下一页下一页上一页上一页7(3) 氧化态和相应的还原态物质能用来组成电对,通常称为氧化还原电对,用符号“氧化态/还原态”表示。一般只把作为氧化态和还原态的物质用化学式表示出来,通常不表示电极溶液的组成。如,铜锌原电池中的两个半电池的电对可分别

5、表示为Zn2+/Zn和Cu2+/Cu。 又如又如:Fe3+/Fe2+, O2/OH-, Hg2Cl2/Hg, MnO4-/Mn2+ 等。等。首首 页页末末 页页下一页下一页上一页上一页8 (-)ZnZnSO4(c1) CuSO4(c2)Cu(+) (4) 任一自发的氧化还原反应都可以组成一任一自发的氧化还原反应都可以组成一个原电池。个原电池。原电池装置可用原电池装置可用图式图式表示。表示。 例如:Cu-Zn原电池可表示为 规定规定:负极写在左边,正极写在右边,以双虚垂线负极写在左边,正极写在右边,以双虚垂线( )表示盐桥,以单垂线表示盐桥,以单垂线(|)表示两个相之间的界面。用表示两个相之间的

6、界面。用“,”来分隔两种不同种类或不同价态溶液。来分隔两种不同种类或不同价态溶液。 首首 页页末末 页页下一页下一页上一页上一页93 电极类型电极类型 电电 极极 类类 型型电电 对对(例例)电电 极极金属电极金属电极Zn2+/ZnZn2+(c) | Zn非金属电极非金属电极Cl2/Cl- Cl- (c) | Cl2(p) | Pt氧化还原电极氧化还原电极 Fe3+/Fe2+ Fe3+ (c1),Fe2+ (c2) | Pt难溶盐电极难溶盐电极AgCl/Ag Cl- (c) | AgCl | Ag四类常见电极四类常见电极首首 页页末末 页页下一页下一页上一页上一页104.1.2 4.1.2 原

7、电池的热力学原电池的热力学1. 1.电池反应的电池反应的Gm与电动势与电动势E E的关系的关系 对电动势为对电动势为E的电池反应:的电池反应: CuCu2+2+ZnZn+ZnZn2+2+Cu+Cu 根据标准摩尔生成焓和标准摩尔生成吉布斯根据标准摩尔生成焓和标准摩尔生成吉布斯函数,可求得函数,可求得(298.15K时): rHm = -217.2 -217.2 kJmol-1 -1 rGm = - -212.69 212.69 kJmol-1 -1首首 页页末末 页页下一页下一页上一页上一页11rGm=wmax= - -QE = - -nFE ; F=96485 Cmol-1在原电池中在原电池中

8、, , 非体积功非体积功w 即为电功即为电功we e 从热力学的化学反应等温式中,可得到下式:上式称为电动势的能斯特(W.Nernst)方程,电动势是强度性质,其值与反应中化学计量数的选配无关。?rGm= -nFE 或或rGm = -nFE abccccnFRTEE/(/(ln反应物)产物)是系统可用来做非体积功的那部分能量是系统可用来做非体积功的那部分能量 rGm由于由于1mol1mol电子电子所带电量所带电量 首首 页页末末 页页下一页下一页上一页上一页122. 电池反应的电池反应的K 与标准电动势与标准电动势E 的关系的关系而而 rGm = -nFE可得:可得: RTnFEK lnV05

9、917.0lgnEK当当T=298.15K时:时: 以上讨论可知,电化学方法实际上是热力学方以上讨论可知,电化学方法实际上是热力学方法的具体运用。法的具体运用。KRTGmrln 已知K 与rGm的关系如下: 注意:注意:常用对数常用对数 F/2.303RTF/2.303RT =0.05917首首 页页末末 页页下一页下一页上一页上一页134.2 4.2 电极电势电极电势4.2.14.2.1标准电极电势标准电极电势如如: : ( (Zn2+/Zn); ); ( (Cu2+/Cu); ); ( (O2/OH- -); ); (MnO4-/Mn2+ +);); ( (Cl2/Cl- -) )等等。

10、原电池能够产生电流原电池能够产生电流, ,表明原电池两极间表明原电池两极间存在电势差存在电势差, ,即每个电极都有一个电势即每个电极都有一个电势, ,称为电称为电极电势。用符号极电势。用符号: : ( (氧化态氧化态/ /还原态还原态) )表示。表示。首首 页页末末 页页下一页下一页上一页上一页14 两电极的值大小(高低)不同,其差值即为电池的电动势E。 E= (正极)- (负极) 目前测定电极电势的绝对值尚有困难。在实际应用中只需知道的相对值而不必去追究它们的绝对值。 解决问题的办法: 国际上统一国际上统一( (人为) )规定:标准氢电极的电极电势 为零V0)/HH(2首首 页页末末 页页下

11、一页下一页上一页上一页15标准氢电极标准氢电极 标准氢电极标准氢电极:将镀有一层疏松铂黑的铂片插入a(H+) = 1 的酸溶液中。在298.15K时不断通入p(H2) =100kPa的纯氢气流,铂黑很易吸附氢气达到饱和,同时对电化学反应有催化作用,使氢气很快与溶液中的H达成平衡。其可逆程度很高,这样组成的电极称为标准氢电极。在右上角加“”以示“标准”,括号中电对“H+/H2”表示“氢电极” (SHE) 。 标准氢电极装置图/HH 电对:2电极反应电极反应:()V000. 0/HH2( )gH 2eaq)(H22表示为:H+H2(g) Pt或PtH2 (g) H+首首 页页末末 页页下一页下一页

12、上一页上一页16 未知未知的的测定测定: :标准标准氢电极与待测电极组成氢电极与待测电极组成原电池后原电池后, ,测其电池反测其电池反应的应的电动势电动势E E。K+Cl-p(H2) =100kPa首首 页页末末 页页下一页下一页上一页上一页17附例附例4.1:Zn-H2在标准条件下组成电池,Zn为负极,在25时测得电池的电动势E = 0.7618V。求可求出待测电极 (Zn2+/Zn)的标准电极电势得:得: = 0.7618V)/(2ZnZn解:根据 E= (正极)- (负极)0.7618V = 0V (Zn2+/Zn) (Zn2+/Zn) = ?首首 页页末末 页页下一页下一页上一页上一页

13、18参比电极参比电极*当当c (KCl)为饱和为饱和溶液溶液时时(c=2.8mol/l), = 0.2412V使用标准氢电极不方便,一般常用易于使用标准氢电极不方便,一般常用易于制备、使用方便且电极电势稳定的甘汞制备、使用方便且电极电势稳定的甘汞电极或氯化银电极等作为电极电势的对电极或氯化银电极等作为电极电势的对比参考,称为参比电极。比参考,称为参比电极。 如:右图的如:右图的甘汞电极甘汞电极:Pt Hg Hg2Cl2 Cl-KCl溶液Hg2Cl2HgPt首首 页页末末 页页下一页下一页上一页上一页19标准电极电势表:标准电极电势表:p364 p364 附录附录8 8 根据上述方法,可利用标准

14、氢电极或参比电极测得一系列待定电极的标准电极电势。 书末附录8中列出298.15K时标准状态活度(a=1,压力p=100kPa)下的一些氧化还原电对的标准电极电势,表中都是按 代数值由小到大的顺序自上而下排列的。 首首 页页末末 页页下一页下一页上一页上一页20 电电 对对 电电 极极 反反 应应 /V Na+/Na Na+(aq)+e =Na(s) -2.71 Zn2+/Zn Zn2+(aq)+2e = Zn(s) -0.7618 H+/H2 2H+(aq)+2e = H2 (g) 0 Cu2+/Cu Cu2+(aq)+2e = Cu(s) 0.3419 O2/OH O2(g)+2H2O+4

15、e=4 OH(aq) 0.401 F2/F F2(g)+2e = 2F(aq) 2.866 氧化能力逐渐增强氧化能力逐渐增强还原能力逐渐增强还原能力逐渐增强 部分电对列表如下:部分电对列表如下:首首 页页末末 页页下一页下一页上一页上一页21表的物理意义和注意事项表的物理意义和注意事项(1)(1)表中表中 代数值按从小到大顺序编排。代数值按从小到大顺序编排。 代数值越大,表明电对的氧化态越易得电子,即氧化态就是越强的氧化剂; 代数值越小,表明电对的还原态越易失电子,即还原态就是越强的还原剂; 如如: :( (I2/I- - )=0.5355)=0.5355V。 (Cl2/Cl- -)=1.35

16、83)=1.3583V, , ( (Br2/Br- -)=1.066)=1.066V,可知:可知:Cl2氧化性较强,而氧化性较强,而I- -还原性较强。还原性较强。判断氧化还原判断氧化还原剂的相对强弱剂的相对强弱 首首 页页末末 页页下一页下一页上一页上一页22(2) (2) 代数值与电极反应中化学计量数的选配无关代数值与电极反应中化学计量数的选配无关 代数值是反映物质得失电子倾向的大小,它与物质的数量无关。 如:如:Zn2+2e- = Zn 与 2Zn2+4e- = 2Zn 数值相同数值相同(3) (3) 代数值与半反应的方向无关。代数值与半反应的方向无关。 如Cu2+2e- = Cu与Cu

17、 = Cu2+2e 数值相同数值相同 IUPAC规定,表中表中电极反应以还原反应表示(故有称之谓“还原电势”),无论电对物质在实际反应中的转化方向如何,其 代数值不变。首首 页页末末 页页下一页下一页上一页上一页23(4)(4)查阅标准电极电势数据时,要注意电对的具体存在查阅标准电极电势数据时,要注意电对的具体存在形式、状态和介质条件等都必须完全符合。形式、状态和介质条件等都必须完全符合。 如:Fe2+(aq)+2e- =Fe(s) (Fe2+/ Fe)=-0.447vFe3+(aq)+e- =Fe2+(aq) (Fe3+/ Fe2+)=0.771vH2O2(aq) + 2H+(aq) + 2

18、e = 2H2O (H2O2/H2O) = 1.776VO2(g) + 2H+(aq) + 2e = H2O2(aq) (O2/H2O2) = 0.695V首首 页页末末 页页下一页下一页上一页上一页244.2.2 4.2.2 电极电势的能斯特方程式电极电势的能斯特方程式对于任意给定的电极,电极反应通式为 离子浓度对电极电势的影响,可从热力学推导而得如下结论: a a( (氧化态氧化态)+)+n ne e- - b b( (还原态还原态) ) baccccnFRT/(/(ln还原态)氧化态)(4.4a)T T=298.15K=298.15K时时: :(4.4b)baccccn/(/(lgV05

19、917. 0还原态)氧化态)式式(4.4(4.4a)a)和和(4.4(4.4b)b)称为电极电势的能斯特方程称为电极电势的能斯特方程 注意:注意:常用对数常用对数 首首 页页末末 页页下一页下一页上一页上一页25 在能斯特方程式中: n n 为半反应中得失的电子数;为半反应中得失的电子数;纯液体、纯固体不表示在式中。纯液体、纯固体不表示在式中。a a 氧氧 或或b b 还还 皆以半反应中各物质的化学计量数为指数;皆以半反应中各物质的化学计量数为指数; 电极反应中某物质若是气体,则用相对分压电极反应中某物质若是气体,则用相对分压p p/ /p p 表示。表示。 例如例如: :O2+2H2O+4e

20、- -4OH- - 能斯特方程式表示为能斯特方程式表示为:422/OH(/)O(lg4V05917. 0)OH/O(ccpp)首首 页页末末 页页下一页下一页上一页上一页26附例附例4.2 计算OH浓度为0.100moldm-3时,氧的电极电势 (O2/OH-)。已知:p(O2)=101.325kPa,T=298.15K。 解:解:从附录8中可查得氧的标准电极电势: (O2/OH-)=0.401V O2(g)+ 2H2O +4e- 4OH-(aq) , 当c(OH-)=0.100moldm-3时,氧的电极电势为 422/OH(/)O(lg4V05917. 0)/OHO(ccpp)首首 页页末末

21、 页页下一页下一页上一页上一页27=0.460V 若把电极反应式写成 O2+H2O+2e-=2OH- ,可以通过计算予以说明。根据电极反应式,此时电极电势的计算式为: 21433dmmol1/dmmol0100.0kPa100/kPa325.101lg4V05917.0V401.0 经计算,结果不变。说明只要是已配平的电极反应,经计算,结果不变。说明只要是已配平的电极反应,反应式中各物质的化学计量数各乘以一定的倍数,对电极反应式中各物质的化学计量数各乘以一定的倍数,对电极电势的数值并无影响。所以说与电势的数值并无影响。所以说与化学计量数的选配无关。化学计量数的选配无关。/ ( -2(/2)OH

22、/ )Olg2V05917. 0OH )/(O2 ccpp1/2/首首 页页末末 页页下一页下一页上一页上一页28 说明介质的酸碱性对含氧酸盐氧化性的影响较大。说明介质的酸碱性对含氧酸盐氧化性的影响较大。 解:半反应式为: Cr2O72-+14H+6e-=2Cr3+7H2O Nernst方程为:附附例4.3:计算当pH=5.00,c(Cr2O72-)=0.0100moldm-3,c(Cr3+)=1.00 10-6 moldm-3时,重铬酸钾溶液中的(Cr2O72-/ Cr3+)值V)10()10()01. 0(lg60591. 0V23. 126145=0.640V()21423272732

23、(Cr O)/ (H )/ 0.0591VCr O/Crlg6 (Cr )/ cccccc 注意:注意:H H+ +的位置的位置 首首 页页末末 页页下一页下一页上一页上一页294.3 电极电势在化学上的应用电极电势在化学上的应用4.3.1 4.3.1 氧化剂和还原剂相对强弱的比较氧化剂和还原剂相对强弱的比较 已知已知 值大的氧化态物质是强氧化剂; 值小的还原态物质是强还原剂。 首首 页页末末 页页下一页下一页上一页上一页30附附 例例4.4 下列三个电极中在标准条件下哪种物质是最强的氧化剂?若其中MnO4/Mn2+的电极改为在pH=5.00的条件下,它们的氧化性相对强弱次序将怎样改变?已知

24、(MnO4-/Mn2+) = 1.507V (Br2/Br-) = 1.066V (I2/I-) = 0.5355V解:(1)在标准状态下可用 的大小进行比较。 值的相对大小次序为: (MnO4-/Mn2+) (Br2/Br-) (I2/I-)所以在上述物质中MnOMnO4 4- -是最强的氧化剂,I I- -是最强的还原剂,即氧化性的强弱次序是MnOMnO4 4- - BrBr2 2 I I2 2(2)(2) pH=5.0时时,根据计算得 (MnO4/Mn2+) = 1.034V。此时电极电势相对大小次序为 (Br2/Br-) (MnO4-/Mn2+) (I2/I-)这就是说,当KMnO4溶

25、液的酸性减弱成pH=5.00时,氧化性强弱的次序变为Br2MnO4-I2首首 页页末末 页页下一页下一页上一页上一页314.3.2 氧化还原反应方向的判断氧化还原反应方向的判断 只要E0,当 (正) (负)时,即:作为氧化剂电对的电极电势代数值大于作为还原剂电对的电极电势代数值时,就能满足反应自发进行的条件。 因此,可用电动势因此,可用电动势E E或或 判断反应方向:判断反应方向: E E 0 0 即即 G G 0 0 反应正向自发反应正向自发 E E =0 =0 即即G G =0 =0 反应处于平衡状态反应处于平衡状态 E E 0 0 0 反应正向非自发反应正向非自发( (逆过程可自发)逆过

26、程可自发)首首 页页末末 页页下一页下一页上一页上一页32例例4.5 4.5 试判断以下反应试判断以下反应在在H浓度为浓度为1.00105mol dm-3溶液中进行时的方向溶液中进行时的方向(其其余物质处于标准态余物质处于标准态)。2Mn2+ + 5Cl2 +8H2O 2MnO4- + 16H+ + 10Cl-介质介质( (H H+ +浓度浓度) )对该反应影响很大对该反应影响很大,当c(H+)10-5 moldm-3时,由于其它物质均处于标准状态,则根据能斯特方程式计算可得: 解: 若用标准电极电势作为判据, (MnO4/Mn2+)值(1.507V)大于 (Cl2/Cl-)值(1.358V)

27、,似乎氧化态物质Cl2与还原态物质Mn2+ 不能发生反应。首首 页页末末 页页下一页下一页上一页上一页33 两半反应式为: Cl2 + 2e- = 2Cl Mn2+ 4H2O = MnO4 + 5e + 8H+ = 1.034 V )/MnMnO()/MnMnO(2424cccccc/ )Mn(/ )H(/ )MnO(lg5V05917. 0284-可见, c(H+)对(Cl2/Cl)无影响,对(MnO4/Mn2+) 有重大影响。- (Cl2/Cl-)=1.358V 所以,可以正向进行。首首 页页末末 页页下一页下一页上一页上一页344.3.3 氧化还原反应进行程度的衡量氧化还原反应进行程度的

28、衡量 氧化还原反应进行的程度也就是氧化还原反应在达到平衡时,生成物相对浓度与反应物相对浓度之比,可由氧化还原反应标准平衡常数K 的大小来衡量。 求得可由公式:V05917.0lgnEK首首 页页末末 页页下一页下一页上一页上一页35解解:先设想按上述氧化还原反应所组成的一个标准条件下的原电池: 负极 Cu(s)Cu2+(aq)2e- (Cu2+/Cu)0.3419V 正极 2Ag+(aq)2e-2Ag(s) (Ag/Ag)0.7996V 例例4.6 计算下列反应在计算下列反应在298.15K时的标准平衡常数时的标准平衡常数K 。 Cu(s)2Ag+(aq) Cu 2+(aq)2Ag(s) 首首

29、 页页末末 页页下一页下一页上一页上一页36 上述结果表明:该反应进行的程度是相当彻底的。但实际情况如何,还要涉及到反应速率问题。这类溶液中离子间氧化还原反应较瞬即完成的离子互换反应稍慢些。=0.7996V-0.3419V=0.4577V E = (正极)- (负极) 可求出可求出根据公式:根据公式: 47.150.05917VV4577.02V0591.0lgnEK 得:得: K =3.0 1015 首首 页页末末 页页下一页下一页上一页上一页374.4 化学电源化学电源借自发的氧化还原反应将化学能直接转变为电能的装置称为化学电源。 4.4.1、一次电池 放电后不能充电或补充化学物质使其复原

30、的电池。 1.锌-锰干电池电池符号:电池符号:(-)Zn|ZnCl2, NH4Cl(糊状糊状) |MnO2|C(+)电极反应电极反应:(-) Zn(s) Zn2+(aq) + 2e-(+)2MnO2 +2NH4+(aq)+2e- Mn2O3 +2NH3(g)+2H2O(l) 电动势电动势1.5V。它携带方便。但反应不可逆,寿命有限。它携带方便。但反应不可逆,寿命有限。 首首 页页末末 页页下一页下一页上一页上一页382 锌锌-氧化汞电池氧化汞电池电池符号电池符号: :(-)Zn Hg KOH(糊状,含饱和ZnO) HgO C(+)电极反应电极反应: :(-) Zn + 2OH- - 2e- Z

31、nO + H2O(+) HgO(s) + H2O + 2e- Hg(l) + 2OH- 锌-氧化汞电池体积小能量高,贮存性能优良,是常用电池中放电电压最平稳的电源之一。缺点是使用汞不利于环保。首首 页页末末 页页下一页下一页上一页上一页393 锂锂-铬酸银电池铬酸银电池以锂为负极的还原剂,铬酸银为正极的氧化剂,其导电介质为含有高氯酸锂(LiClO4)的碳酸丙烯酯(PC)溶液。 电池符号:电池符号:(-)Li | LiClO4, PC | Ag2CrO4 | Ag(+)电极反应电极反应: (-) Li - e- Li+ (+) Ag2CrO4 + 2Li+ + 2e- 2Ag + Li2CrO4

32、 优点:单位体积所含能量高,稳定性好,电池电压高(2.83.6V)。 首首 页页末末 页页下一页下一页上一页上一页404.4.2 二次电池二次电池放电后通过充电使其复原的电池。 v铅蓄电池铅蓄电池电池符号电池符号(-)(-)Pb|H2SO4|PbO2(+)电极反应:负极:Pb + SO42- -2e- = PbSO4正极:PbO2 + 4H+ + SO42- + 2e- = PbSO4 + 2H2O 总反应式 Pb + PbO2 + 2H2SO4 2PbSO4 + 2H2O放电充电首首 页页末末 页页下一页下一页上一页上一页41在放电后,可以利用外界直流电源进行充电,输入能量,使两电极恢复原状

33、。充电时,两极反应为放电时的逆反应。正常蓄电池中硫酸密度在1.251.30gcm-3之间。若低于1.20gcm-3,则表示已部分放电,需充电后才能使用。 具有原料易得、价格低廉、技术成熟、使用可靠,又可大电流 放电等优点,所以使用很广泛。其中约80%用于汽车工业(发动马达)。缺点太笨重(载重2t的搬运车电池自重0.5t)首首 页页末末 页页下一页下一页上一页上一页424.4.3 连续电池连续电池 在放电过程中可以不断地输入化学物质,通过反应把化学能转变成电能,连续产生电流的电池。 燃料电池就是一种连续电池。燃料电池是名符其实的把能源中燃料燃烧反应的化学能直接转化为电能的“能量转换机器”。能量转

34、换率很高,理论上可达100。实际转化率约为70%80。 燃料电池由燃料(氢、甲烷、肼、烃、甲醇、煤气、天然气等)、氧化剂(氧气、空气等)、电极和电解质溶液等组成。燃料,如氢,连续不断地输入负极作还原活性物质,把氧连续不断输入正极,作氧化活性物质,通过反应连续产生电流。首首 页页末末 页页下一页下一页上一页上一页43氢氢- -氧燃料电池、第四类发电氧燃料电池、第四类发电 优点:a.能量转换效率高,运行寿命长。 b.无噪声,无污染 c. 可连续大功率供电燃料电池汽车燃料电池汽车我国和世界正在大力发展的绿色汽车我国和世界正在大力发展的绿色汽车20世纪90年代已可取代中等容量火电。现场使用,分散配制。

35、目前实用较大的磷酸型很有前途的甲醇-氧燃料电池 (-)Pt|CH3OH(l)|KOH(aq)|O2(g)|Pt(+)首首 页页末末 页页下一页下一页上一页上一页444.4.4 化学电源与环保化学电源与环保 在一次电池和二次电池中,含有汞、锰、镉、铅、锌等重金属,使用后如果随意丢弃,就会造成环境污染。研究无污染电池和无害化处理是目前亟需解决的两个方面 重金属通过食物链后在人体内聚积,就会对健康造成严重的危害。重金属聚积到一定量后会使人发生中毒现象,严重的将导致人的死亡。因此,加强废电池的管理,不乱扔废电池实现有害废弃物的“资源化、无害化”管理,已迫在眉睫。首首 页页末末 页页下一页下一页上一页上

36、一页454.5 电解电解 利用外加电能的方法迫使反应进行的过程叫电解。在电解过程中,电能转变为化学能。 外电源外电源: :正极正极 负极负极电解池电解池: :阳极阳极阴极阴极反应类型反应类型: : 氧化氧化 还原还原阳极阴极H2(g) H+2H+(aq)+2e-=H2(g) 在电解池的两极反应中氧化态物质得到电子或还原态物质给出电子的过程都叫做放电放电。 首首 页页末末 页页下一页下一页上一页上一页464.5.1 分解电压和超电势分解电压和超电势实际分解电压使电解顺利进行的最低电压。以铂作电极,电解0.100moldm-3Na2SO4溶液为例。 阳极反应:阳极反应:4OH- 4e- 2H2O

37、+ O2算得算得:阳阳= 0.815V阴极反应:阴极反应:2H+ + 2e- H2 算得算得:阴阴= 0.414V D0 电压电流密度首首 页页末末 页页下一页下一页上一页上一页47 由电解产物组成的氢氧原电池,H2为负极、O2为正极。E =1.23V。 该原电池的电子流方向与外加直流电源电子流的方向相反。因而至少需要外加一定值的电压以克服该原电池所产生的电动势,才能使电解顺利进行。表明分解电压是由于电解产物在电极上表明分解电压是由于电解产物在电极上形成某种原电池,产生反向电动势而引起的。形成某种原电池,产生反向电动势而引起的。首首 页页末末 页页下一页下一页上一页上一页48 因此,上述实验至

38、少外电源提供的电动势因此,上述实验至少外电源提供的电动势1.231.23V电解才可发生,此值电解才可发生,此值(1.23(1.23V) )称称理论分解电压E(理)。 事实上,上述实验至少需事实上,上述实验至少需1.71.7V才能使其发才能使其发生电解。此值生电解。此值(1.7(1.7V) )称称实际分解电压E(实)。 电解时电解池的实际分解电压E(实)与理论分解电压E(理)之差称为超电压E(超),即E(实)E(理)原因:有电流,偏离平衡电势,引起“极化”首首 页页末末 页页下一页下一页上一页上一页49 超电压超电压是由超电势构成的。是由超电势构成的。由于两极的超电势均取正值,所以电解池的超电压

39、:E(超)= (阴)+ (阳) 超电势超电势是在不含内电阻、消除浓差极化的是在不含内电阻、消除浓差极化的条件下的电化学极化而产生的电势。条件下的电化学极化而产生的电势。其中:浓差极化 是由于离子扩散速率缓慢所引起的,可设法消除。 电化学极化 是由电解产物析出过程中某一步骤(如离子的放电、原子结合为分子、气泡的形成等)反应速率迟缓而引起电极电势偏离平衡电势的现象。即电化学极化是由电化学反应速率决定的,无法消除。首首 页页末末 页页下一页下一页上一页上一页50 影响影响超电势超电势的因素有三个方面:的因素有三个方面:电解产物电解产物:金属的超电势一般很小,气体的超电势较大,而金属的超电势一般很小,

40、气体的超电势较大,而氢气、氧气的超电势则更大。氢气、氧气的超电势则更大。 超电势超电势导致:导致:阳极阳极析出电势升高,析出电势升高,即即(析,阳)=(=(阳阳 + +); ); 阴极阴极析出电势降低析出电势降低,即,即(析,阴)=(=(阴阴 - -) )。电极材料和表面状态电极材料和表面状态:同一电解产物在不同的电极上的超电:同一电解产物在不同的电极上的超电势数值不同,且电极表面状态不同时超电势数值也不同。势数值不同,且电极表面状态不同时超电势数值也不同。电流密度电流密度:随着电流密度增大超电势增大。在表达超电势的随着电流密度增大超电势增大。在表达超电势的数据时,必须指明电流密度的数值或具体

41、条件。数据时,必须指明电流密度的数值或具体条件。 首首 页页末末 页页下一页下一页上一页上一页514.5.2 电解池中两极的电解产物电解池中两极的电解产物 在阴极阴极上进行还原反应的首先是析出电势代数值电势代数值较大较大的氧化态物质的氧化态物质。 综合考虑电极电势和超电势的因素得出: 在阳极阳极上进行氧化反应的首先是析出电势电势(考虑超电势因素后的实际电极电势)代代数值数值较小较小的还原态物质的还原态物质;首首 页页末末 页页下一页下一页上一页上一页52简单简单盐类水溶液盐类水溶液电解产物归纳如下电解产物归纳如下: :阳极析出的物质:阳极析出的物质:还原态物质还原态物质 金属电极金属电极, X

42、-,S2-, OH- , 含氧酸根含氧酸根电极反应电极反应 M-ne-Mn+ 2X-2e-X2 4OH- 4e-2H2O+O2 氧化态物质氧化态物质 K+Ca2+Na+Mg2+Al3+ Mn2+Zn2+(H+)Cu2+Hg2+电极反应电极反应 2H+2e-H2 M2+2e-M阴极析出的物质:阴极析出的物质:首首 页页末末 页页下一页下一页上一页上一页53阴极析出的物质:阴极析出的物质:1、电极电势代数值比(H+/H2)(可小于-1.0V)大的金属正离子首先在阴极还原析出2、一些电极电势比(H+/H2)小的金属正离子(如Zn2+、Fe2+等),则由于H2的超电势较大,这些金属正离子仍可能大于H+

43、的析出电势,这些金属也会首先析出。3、电极电势很小的金属离子(如Na+、K+、Mg2+、Al3+等),在阴极不易被还原,而总是水中的H+被还原成H2而析出。首首 页页末末 页页下一页下一页上一页上一页54阳极析出的物质:阳极析出的物质:1、金属材料(除Pt等惰性电极外)作阳极时,金属阳极首先被氧化成金属离子溶解。2、用惰性材料作电极时,电解S2-、Br-、Cl-等简单负离子的盐溶液时,在阳极可以优先析出S、Br2和Cl23、用惰性阳极且溶液中存在复杂离子如SO42-等时,由于其电极电势比(O2/OH-)(可大于1.7V)还要大,因而一般都是OH-首先被氧化而析出氧气。首首 页页末末 页页下一页

44、下一页上一页上一页55电解产物分析?电解产物分析?电解NaCl浓溶液(石墨作阳极,铁作阴极)?电解ZnSO4溶液(石墨作阳极,铁作阴极)?首首 页页末末 页页下一页下一页上一页上一页564.5.3 电解的应用电解的应用/1. 1.电镀:电镀: 电镀电镀是应用电解原理在某些金属表面镀上一薄层其他金属或合金的过程,既可防腐蚀又可起装饰的作用。 在电镀时,一般将需要镀层的零件作为阴极(连接电源负极),而用作镀层的金属(如Ni-Cr合金、Au等)作为阳极(连接电源正极)。 电镀液一般为含镀层金属配离子的溶液。首首 页页末末 页页下一页下一页上一页上一页57 在适当的电压下,阳极发生氧化反应,金属失去电

45、子而成为正离子进入溶液中,即阳极溶解;阴极发生还原反应,金属正离子在阴极镀件上获得电子,析出沉积成金属镀层。 如:电镀锌:被镀零件作为阴极材料,金属锌作为阳极材料,在锌盐(如Na2Zn(OH)4)溶液中进行电解。 阴极:Zn2+2e- =Zn阳极: Zn = Zn2+2e- 首首 页页末末 页页下一页下一页上一页上一页582 阳极氧化阳极氧化 用电解的方法通以阳极电流,使金属表面形成氧化膜用电解的方法通以阳极电流,使金属表面形成氧化膜以达到防腐耐蚀目的的一种工艺。以达到防腐耐蚀目的的一种工艺。 以铝的阳极氧化为例,在阳极铝表面上,一种是Al2O3的形成反应,另一种是Al2O3被电解液不断溶解的

46、反应。当Al2O3的生成速率大于溶解速率时,氧化膜就能顺利地生长,并保持一定的厚度。 阳极阳极(Al) 2Al + 3H2O 6e- = Al2O3 + 6H+ 主要反应主要反应 2H2O 4e- = 4H+ + O2 次要反应次要反应 阴极阴极(Pb) 2H+ + 2e- = H2 阳极氧化可采用稀硫酸或铬酸或草酸溶液。阳极氧化可采用稀硫酸或铬酸或草酸溶液。首首 页页末末 页页下一页下一页上一页上一页59阳极氧化膜阳极氧化膜(厚度可达5300m)靠靠 近近 基基 体:纯度较高的致密体:纯度较高的致密AlAl2 2OO3 3膜,厚度膜,厚度0.010.050.010.05 mm,称阻挡层。称阻

47、挡层。靠近电解液:由靠近电解液:由AlAl2 2OO3 3和和AlAl2 2OO3 3H H2 2OO所形成的膜,所形成的膜,硬度较低,有松孔,可使电解液流硬度较低,有松孔,可使电解液流通,如图所示。通,如图所示。首首 页页末末 页页下一页下一页上一页上一页603电刷镀电刷镀 电刷镀电刷镀是把适当的电镀液刷镀到受损的机械零部件上使其回生的技术。 几乎所有与机械有关的工业部门都在推广应用,能以很低的成本换得较大的经济效益。 电刷镀的电镀液不是放在电镀槽中,而是在电刷镀过程中不断滴加电镀液,使之浸湿在棉花包套中,在直流电的作用下不断刷镀到工件阴极上。这样就把固定的电镀槽改变为不固定形状的棉花包套,

48、从而摆脱了庞大的电镀槽,使设备简单而操作方便。 用镀笔作阳极,工件作阴极、并在操作中不断旋转。首首 页页末末 页页下一页下一页上一页上一页614.6 金属的腐蚀与防止金属的腐蚀与防止 当金属与周围介质接触时,由于发生化学作用或电化学作用而引起的破坏叫做金属的腐蚀金属的腐蚀。 估计每年腐蚀而报废的钢铁设备相当于钢铁年产量的1/4,发达国家年经济损失占GDP的34%。因此在了解金属腐蚀机理的基础上懂得如何防止金属腐蚀和了解如何进行金属材料的化学保护十分必要。 金属腐蚀的本质都是金属原子失电子被氧化的过程。 首首 页页末末 页页下一页下一页上一页上一页624.6.1 腐蚀的分类腐蚀的分类 金属与周围

49、介质直接发生氧化还原反应而引起的腐蚀叫化学腐蚀。1 化化 学学 腐腐 蚀蚀 化学腐蚀发生在非电解质溶液中或干化学腐蚀发生在非电解质溶液中或干燥的气体中,在腐蚀过程中不产生电流。如:燥的气体中,在腐蚀过程中不产生电流。如:钢铁的高温氧化脱碳、石油或天然气输送管钢铁的高温氧化脱碳、石油或天然气输送管部件的腐蚀等。化学腐蚀原理比较简单部件的腐蚀等。化学腐蚀原理比较简单, ,属于属于一般的氧化还原反应。一般的氧化还原反应。首首 页页末末 页页下一页下一页上一页上一页63化学腐蚀化学反应例:1)钢铁的高温氧化:FeO2740KFe3O4FeOCO2FeO + COH2OFeO + H2高温高温致密疏松,

50、易龟裂,向纵深腐蚀 2)钢的脱碳。O2,H2OCO首首 页页末末 页页下一页下一页上一页上一页64金属与周围介质发生电化学作用而引起的金属腐蚀。例如,钢铁在潮湿的环境中生锈,发生的就是电化学腐蚀: 较小的金属易失电子,被氧化而腐蚀,是腐蚀电池的阳极(也称负极)。电化学腐蚀比化学腐蚀普遍得多,腐蚀的速率一般也快得多。2 电化学腐蚀电化学腐蚀首首 页页末末 页页下一页下一页上一页上一页651) 析氢腐蚀析氢腐蚀在酸性较强的条件下钢铁发生析氢腐蚀,电极反应为:阳极:Fe2e-=Fe2+阴极:2H+2e-=H2在弱酸性或中性条件下钢铁发生吸氧腐蚀,电极反应为:阳极:Fe-2e-=Fe2+阴极:2H2O

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(电化学与金属腐蚀课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|