微分运算法则课件.ppt

上传人(卖家):三亚风情 文档编号:2318362 上传时间:2022-04-02 格式:PPT 页数:24 大小:1.21MB
下载 相关 举报
微分运算法则课件.ppt_第1页
第1页 / 共24页
微分运算法则课件.ppt_第2页
第2页 / 共24页
微分运算法则课件.ppt_第3页
第3页 / 共24页
微分运算法则课件.ppt_第4页
第4页 / 共24页
微分运算法则课件.ppt_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、二、微分运算法则二、微分运算法则三、微分在近似计算中的应用三、微分在近似计算中的应用第五节一、微分的概念一、微分的概念 函数的微分 第二章 一、微分的概念一、微分的概念 引例引例: 一块正方形金属薄片受温度变化的影响,问此薄片面积改变了多少? 设薄片边长为 x , 面积为 A , 则,2xA 0 xx面积的增量为2020)(xxxA20)(2xxxxx 020 xA xx 02)( x关于x 的线性主部高阶无穷小0 x时为故xxA02称为函数在 的微分0 x当 x 在0 x取得增量x时,0 x变到,0 xx边长由其的微分微分,定义定义: 若函数)(xfy 在点 的增量可表示为0 x)()(00

2、 xfxxfy( A 为不依赖于x 的常数)则称函数)(xfy 而 称为xA在)(xf0 x点记作yd,df或即xAyd定理定理: 函数)(xfy 在点 可微的充要条件充要条件是0 x处可导,在点0)(xxfy , )(0 xfA且)( xoxA即xxfy)(d0在点0 x可可微微,定理定理 : 函数证证: “必要性必要性” 已知)(xfy 在点 可微 ,0 x则)()(00 xfxxfy)(limlim00 xxoAxyxxA故Axf)(0)( xoxA)(xfy 在点 可导,0 x且)(xfy 在点 可微的充要条件充要条件是0 x)(xfy 在点 处可导,0 x且, )(0 xfA即xxf

3、y)(d0定理定理 : 函数)(xfy 在点 可微的充要条件充要条件是0 x)(xfy 在点 处可导,0 x且, )(0 xfA即xxfy)(d0“充分性充分性”已知)(lim00 xfxyx)(xfy )(0 xfxy)0lim(0 xxxxfy)(0故)()(0 xoxxf即xxfy)(d0在点 可导,0 x则线性主部的此项为时yxf0)(0说明说明:0)(0 xf时 ,xxfy)(d0)()(0 xoxxfyyyxdlim0 xxfyx)(lim00 xyxfx00lim)(11所以0 x时yyd很小时, 有近似公式xyyd与是等价无穷小,当故当微分的几何意义xxfy)(d0 xx0 x

4、yO)(xfy 0 xyydxtan当 很小时,xyyd时,当xy 则有xxfyd)(d从而)(ddxfxy导数也叫作微商切线纵坐标的增量自变量的微分自变量的微分,为称 x记作xdxyxd记例如例如,3xy yd02. 0d2xx23xxd02. 0d2xx24. 0,arctanxy ydxxd112基本初等函数的微分公式 (见 P116表)又如又如,二、二、 微分运算法则微分运算法则设 u(x) , v(x) 均可微 , 则)(d. 1vu )(d. 2uC(C 为常数)(d. 3vu)0()(d. 4vvu分别可微 ,)(, )(xuufy )(xfy的微分为xyyxddxxufd)()

5、(uduufyd)(d微分形式不变微分形式不变5. 复合函数的微分则复合函数vudd uCdvuuvdd 2ddvvuuv例例1., )e1(ln2xy求 .dy解解:2e11dxy)e1(d2x2e11x)(d2xxxxxd2ee1122xxxxde1e2222ex例例2. 设,0)cos(sinyxxy求 .dy解解: 利用一阶微分形式不变性 , 有0)d(cos()sin( dyxxyxxyyxdcosdsin)sin(yx0)d(d yxxyd d )sin(cosyxxyxyxsin)sin(例例3. 在下列括号中填入适当的函数使等式成立:xxd) d() 1 (tt dcos) d

6、()2(221xtsin1说明说明: 上述微分的反问题是不定积分要研究的内容.CC注意 数学中的反问题往往出现多值性.)( 为任意常数C注意:注注)(22 44)(22)(4sin22)sin(2k224数学中的反问题往往出现多值性 , 例如 三、三、 微分在近似计算中的应用微分在近似计算中的应用)()(0 xoxxfy当x很小时,)()(00 xfxxfyxxf)(0 xxfxfxxf)()()(000 xxx0令使用原则使用原则:;)(, )() 100好算xfxf.)20靠近与xx)()()(000 xxxfxfxf得近似等式:特别当xx,00很小时,xffxf)0()0()(常用近似公

7、式常用近似公式:x1)1 () 1 (x很小)x(xxxx1xsin)2(3) exxtan)4( )1ln()5(x证明证明: 令)1 ()(xxf得, 1)0(f)0(f,很小时当 xxx1)1 (180dx29sin的近似值 .解解: 设,sin)(xxf取300 x,629x则1802918029sin6sin6cos2123)0175. 0(485. 0)180(例例4. 求29sin4848. 029sin5245的近似值 .解解:24335524551)2243(51)24321(33)2432511(004938. 3例例5. 计算xx1)1 (004942. 32455例例6

8、. 有一批半径为1cm 的球 , 为了提高球面的光洁度,解解: 已知球体体积为334RV 镀铜体积为 V 在01. 0, 1RR时体积的增量,VVVd01. 01RRRR 2401. 01RR)(cm13. 03因此每只球需用铜约为16. 113. 09 . 8( g )用铜多少克 . )cmg9 . 8:(3铜的密度估计一下, 每只球需要镀上一层铜 , 厚度定为 0.01cm , 内容小结内容小结1. 微分概念 微分的定义及几何意义 可微可导2. 微分运算法则微分形式不变性 :uufufd)()(d( u 是自变量或中间变量 )3. 微分的应用近似计算估计误差思考与练习思考与练习1. 设函数

9、)(xfy 的图形如下, 试在图中标出的点0 x处的yy ,d及,dyy 并说明其正负 .yd0 xx00 xxyOy00yyd2.xxed)d(arctane x2e11xd xx2e1exxsindtand. 3x3secxxd2sin) (d. 4Cx2cos215. 设)(xyy 由方程063sin33yxyx确定,.d0 xy解解: 方程两边求微分, 得xx d32当0 x时,0y由上式得xyxd21d0求yy d32xxd3cos30d6y作业作业P123 1 ; 3 (4) , (7) , (8) , (9) , (10) ; 4 ; 5; 8(1) ; 9(2) ; 1. 已知, )1sinarcsin(2xy 求.d y解解:因为 y所以yd备用题备用题22)1(sin11xx1sin2x1cos)1(2xxy dxxxxd222)1(sin12sin已知,eyxxy求.d y解解:方程两边求微分, 得xyyxddyd2.)d(deyxyxedex yx yyxx

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(微分运算法则课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|