金融数学模型课件.pptx

上传人(卖家):三亚风情 文档编号:2419235 上传时间:2022-04-15 格式:PPTX 页数:58 大小:567.10KB
下载 相关 举报
金融数学模型课件.pptx_第1页
第1页 / 共58页
金融数学模型课件.pptx_第2页
第2页 / 共58页
金融数学模型课件.pptx_第3页
第3页 / 共58页
金融数学模型课件.pptx_第4页
第4页 / 共58页
金融数学模型课件.pptx_第5页
第5页 / 共58页
点击查看更多>>
资源描述

1、 以前总是假定消费者或生产者的决策所产以前总是假定消费者或生产者的决策所产生的结果是肯定而唯一的。然而这一点假设生的结果是肯定而唯一的。然而这一点假设是非常脱离实际的。如,农场主的产量不仅是非常脱离实际的。如,农场主的产量不仅取决于他投入多少资本、土地和劳动,而且取决于他投入多少资本、土地和劳动,而且取决于今后一年中的气候状况,这是农场主取决于今后一年中的气候状况,这是农场主无法把握的。在许多情况下,经济决策人只无法把握的。在许多情况下,经济决策人只能预见到自己的行为会带来那几种可能结果,能预见到自己的行为会带来那几种可能结果,以及每一种结果出现的可能性。这就是在结以及每一种结果出现的可能性。

2、这就是在结果不确定的情况下经济人的最优决策问题。果不确定的情况下经济人的最优决策问题。个人对待风险的态度:在现实中,可以观察到两个人对待风险的态度:在现实中,可以观察到两种现象:有些人为了减少未来收入和财富的不确种现象:有些人为了减少未来收入和财富的不确定性而到保险公司投保;而另一些人却为了增加定性而到保险公司投保;而另一些人却为了增加生活中的不确定性而进行赌博。生活中的不确定性而进行赌博。在世界各地,在世界各地,保险公司与跑马场一样生意兴隆。保险公司与跑马场一样生意兴隆。对待风险的态度(风险偏好):对待风险的态度(风险偏好): 人的类型参加的赌博类型是否投保风险规避者(Risk evader

3、)只参加有利的赌博投保风险中立者(Risk neutral)可能参加公平的赌博肯定参加有利的赌博无所谓风险爱好者(Risk lover)即使不利的赌博也参加不投保如,这种赌博:如,这种赌博:90%90%的可能赢的可能赢1 1万元,万元,10%10%的可能的可能输输1010元,这种赌博的预期收益为:元,这种赌博的预期收益为:1 1万元万元90%+90%+(1010元)元)10%=810%=8,999999元元远远高于不参加赌博的预期收益:零。那么,远远高于不参加赌博的预期收益:零。那么,很少有人会拒绝这种赌博。很少有人会拒绝这种赌博。公平赌博:指预期收益为零或胜负各参半的赌公平赌博:指预期收益为

4、零或胜负各参半的赌博;如:博;如:1 1万元万元50%+50%+(-1-1万元)万元)50%=050%=0(元)(元)有利有利赌赌博:博:指预期收益大于零或赢的可能性超指预期收益大于零或赢的可能性超过一半的赌博。过一半的赌博。“公平公平”的保险费率正好与损失发生的概率相的保险费率正好与损失发生的概率相等。等。 预期效用及其函数:人们对不确定情况下预期效用及其函数:人们对不确定情况下的收入或消费也应当有一种偏好顺序,如,的收入或消费也应当有一种偏好顺序,如,人们偏好人们偏好“90%的可能赢的可能赢1万元,万元,10%的可能的可能输输1千元。千元。”胜过胜过“60%的可能赢的可能赢1万元,万元,4

5、0%的可能性输的可能性输100元。元。”90%(1万元)万元)+10%(1000元)元)=8,900(元)(元)60%(1万元)万元)+40%(100元)元)=5,960(元)(元) 那么,如何来排列这种偏好顺序呢?最方那么,如何来排列这种偏好顺序呢?最方便的方法就是按便的方法就是按“预期效用预期效用”(Expected Expected UtilityUtility)的大小来排序。)的大小来排序。 ( 预期效用:取决于各种情况出现的概率和相应预期效用:取决于各种情况出现的概率和相应的概率下可享用的收入或消费的效用。如,若的概率下可享用的收入或消费的效用。如,若未来可能出现两种状态,状态未来可

6、能出现两种状态,状态1和状态和状态2,两种,两种状态出现的概率分别为状态出现的概率分别为 和即和即只有这两种可能性。只有这两种可能性。C1和和C2分别代表状态分别代表状态1和状和状态态2下的收入或消费,那么预期效用函数:下的收入或消费,那么预期效用函数:EU= 。其中。其中U(C1)和和U(C2)为一为一般的效用函数。般的效用函数。预期效用函数预期效用函数EU称为称为“冯冯诺伊曼诺伊曼摩根斯坦摩根斯坦效用函数效用函数”(Von NeunaunMorgenstern Utility Function),以本世纪美国著名数学家),以本世纪美国著名数学家冯冯诺伊曼和经济学家奥诺伊曼和经济学家奥摩根斯

7、坦名字命名的,摩根斯坦名字命名的,他们两人在数学博奕论领域作出了杰出贡献。他们两人在数学博奕论领域作出了杰出贡献。且和21121)()(211cUcU若消费者一般的效用函数为若消费者一般的效用函数为U= LnC则,预期效用函数为:则,预期效用函数为:EU= lLnC1+ 2LnC2若若U=C,则预期效用函数为:,则预期效用函数为: EU= 此时,预期效用等于期望值。此时,预期效用等于期望值。 一般地若可能出现一般地若可能出现n种状态种状态,每一种壮态出现每一种壮态出现的概率为的概率为 预期效用函数为:预期效用函数为:EU= 2211cc)2 , 1(nii EU= 1)(iiicUn保险市场:

8、保险市场:风险规避者必定会参加保险,但没有说明他会投风险规避者必定会参加保险,但没有说明他会投保多少金额,假设他面临损失保多少金额,假设他面临损失10,000元的风险,那么元的风险,那么,他会向保险公司投保,他会向保险公司投保10,000元的金额,并缴纳相应元的金额,并缴纳相应的保险费,还是投保的保险费,还是投保15,000元元 或或5,000元金额?这与保元金额?这与保险费率的高低以及人们对风险的厌恶程度有关。险费率的高低以及人们对风险的厌恶程度有关。假定您现在拥有的财产为假定您现在拥有的财产为W,您面临损失,您面临损失L的可的可能性(如遭窃、失火、生病、住院等),发生损失的能性(如遭窃、失

9、火、生病、住院等),发生损失的可能性为可能性为 ,保险费率为保险费率为r,即您需要支付,即您需要支付rk来购买一张来购买一张金额(最高赔偿额)为金额(最高赔偿额)为K的保险单。损失没有发生的的保险单。损失没有发生的情况为第情况为第1种状态,种状态,1状态您拥有的财产为状态您拥有的财产为C1C1=W-rK因为无论损失发生与否,保险费是不退回的。因为无论损失发生与否,保险费是不退回的。损失不幸发生了,为第损失不幸发生了,为第2种状态,此时,您能从种状态,此时,您能从保险公司得到金额为保险公司得到金额为K的赔偿,您拥有的财富为的赔偿,您拥有的财富为C2=W-L-rK+K2状态发生的概率为状态发生的概

10、率为 ,1状态出现的概率为状态出现的概率为1- 。从保险公司的角度来考察,二状态出现,保险公从保险公司的角度来考察,二状态出现,保险公司需支付保险费司需支付保险费K;一状态出现,保险公司没有任何;一状态出现,保险公司没有任何支出。但无论那种状态出现,保险公司总能收入保险支出。但无论那种状态出现,保险公司总能收入保险费费rk,假设没有许多人(如,假设没有许多人(如10万人)投保,各人之间万人)投保,各人之间遭受损失是相互独立的,则保险公司从每个投保人身遭受损失是相互独立的,则保险公司从每个投保人身上可得的预期利润:上可得的预期利润:KrKrKKrK).1 ( 即若投保人数即若投保人数n足够大,保

11、险公司的平均利足够大,保险公司的平均利润将接近润将接近n 从保险公司来看,只要收支能平衡,它就愿从保险公司来看,只要收支能平衡,它就愿意经营这项保险业务,且保险市场上有许多家保意经营这项保险业务,且保险市场上有许多家保险公司,且任何厂商均可自由进出该行业,则保险公司,且任何厂商均可自由进出该行业,则保险市场将接近完全竞争市场,每家保险公司的经险市场将接近完全竞争市场,每家保险公司的经济利润将被压低到最低限度济利润将被压低到最低限度-零。即保险公司零。即保险公司由于激烈的竞争会向顾客提供完全由于激烈的竞争会向顾客提供完全“公平公平”的保的保险费率,即等于投保人总体遭受损失的概率,即险费率,即等于

12、投保人总体遭受损失的概率,即 r= , 从而利润从而利润p=0 。 KrK 这样的简单化假设并不太离奇,世界上规这样的简单化假设并不太离奇,世界上规模大,经营业务广,跨地区多的保险公司所提模大,经营业务广,跨地区多的保险公司所提供的保险费率都十分接近供的保险费率都十分接近“公平公平”费率,因为费率,因为大公司更容易做到分散风险,收取大公司更容易做到分散风险,收取“公平公平”费费率就足以应付赔偿支出了。率就足以应付赔偿支出了。 甚至连赌场也是如此,大赌场比小赌场甚至连赌场也是如此,大赌场比小赌场更能提供更能提供“公平公平”(预期收益接近于零)的赌(预期收益接近于零)的赌博机会。博机会。 那么,一

13、个风险规避者(那么,一个风险规避者(risk evader)将如何选择将如何选择K的大小?风险规避者的主要特征:的大小?风险规避者的主要特征:在相同的期望值或预期收益下,风险越小,效在相同的期望值或预期收益下,风险越小,效用水平越高。而投保人的期望财富值用水平越高。而投保人的期望财富值EC为:为: EC=(1- )C1+ C2= )()(1 (KrKLWrKW)(rKKLw= = W- L( )所以期望值是既定的,与投保金额K的大小无关。在这种情况下,风险规避者希望使不确定性降到最低限度。即没有任何风险或不确定性,这意味着投保人在任何一种状态下,都将拥有相同数量的财产,即: C1=C2 w-r

14、K=w-L-rK+K得出K=Lr结论:面临结论:面临“公平公平”费率的情况下,厌恶风险费率的情况下,厌恶风险的投保人将对可能遭受的损失进行全额保险。如,的投保人将对可能遭受的损失进行全额保险。如,若投保人面临损失若投保人面临损失10,000元的风险,保险费率为元的风险,保险费率为1%,则规避风险的投保人会支付则规避风险的投保人会支付100元的保险费,购买一元的保险费,购买一张最高赔偿额为张最高赔偿额为10,000元的保险单。元的保险单。众所周知,保险是风险分担的主要手段之一,众所周知,保险是风险分担的主要手段之一,每个人通过保险公司将自己的风险分散到所有相关每个人通过保险公司将自己的风险分散到

15、所有相关投保人身上,从而将自己的风险降到最低限度。所投保人身上,从而将自己的风险降到最低限度。所以,别以为是保险公司真正提供了保险或赔偿了损以,别以为是保险公司真正提供了保险或赔偿了损失。在火灾保险的情况下,失火的风险通过许多面失。在火灾保险的情况下,失火的风险通过许多面临该风险的投保人的分担而分散了,是那些出于谨临该风险的投保人的分担而分散了,是那些出于谨慎投了保而没有遭受火灾的人真正为火灾提供了保慎投了保而没有遭受火灾的人真正为火灾提供了保险,是他们支付的保险费,使得保险公司能够在客险,是他们支付的保险费,使得保险公司能够在客户提出赔偿要求时给予赔偿。户提出赔偿要求时给予赔偿。如使上述模型

16、中的保险市场有效运转,需要两个如使上述模型中的保险市场有效运转,需要两个前提条件:前提条件:首先,分担风险的人必须是相互独立的。如,在首先,分担风险的人必须是相互独立的。如,在人寿保险中,一般情况下,死亡是一种个别风险人寿保险中,一般情况下,死亡是一种个别风险,并不构成社会风险,若,并不构成社会风险,若A君死亡,他可能死于君死亡,他可能死于心脏病、癌症或车祸(现代都市三大死亡原因)心脏病、癌症或车祸(现代都市三大死亡原因),但他的死亡原因反映的只是他自己的情况,不,但他的死亡原因反映的只是他自己的情况,不会增加或减少会增加或减少B君、君、C君或其他人死亡的可能性,君或其他人死亡的可能性,所以人

17、寿保险市场可以稳步发展起来。但若流行所以人寿保险市场可以稳步发展起来。但若流行病很猖劂,情况就不同,若社会死亡率为病很猖劂,情况就不同,若社会死亡率为1%指指的是某种恶性流行病(如霍乱)暴发流行的可能的是某种恶性流行病(如霍乱)暴发流行的可能性为性为1%,且疾病一旦流行人人都有死亡的危险,且疾病一旦流行人人都有死亡的危险,那么这样的人寿保险市场将不可能有效运转。,那么这样的人寿保险市场将不可能有效运转。 再如,一个地方性的保险公司是无法独立承担自然再如,一个地方性的保险公司是无法独立承担自然灾害保险业务的,自然灾害(如台风、洪水、地震灾害保险业务的,自然灾害(如台风、洪水、地震)不来则已,一旦

18、发生,区域内无一投保人能幸免)不来则已,一旦发生,区域内无一投保人能幸免,保险公司靠几个百分点的保险收入是无法进行赔,保险公司靠几个百分点的保险收入是无法进行赔偿的。所以风险不是充分独立的情况下,保险或分偿的。所以风险不是充分独立的情况下,保险或分散风险就不起作用。所以许多中小型保险公司还会散风险就不起作用。所以许多中小型保险公司还会参加再保险(参加再保险(Reinsurance)。例如,美国著名的劳)。例如,美国著名的劳埃德协会(埃德协会(Lloyds)就是一家保险公司的联合组织)就是一家保险公司的联合组织或保险公司的保险公司,风险在成员保险公司之间或保险公司的保险公司,风险在成员保险公司之

19、间进一步分散。进一步分散。其次,保险市场的有效运转要求不存在其次,保险市场的有效运转要求不存在“败德行为败德行为”(Moral hazardMoral hazard)。败德行为:投保后的人们做出)。败德行为:投保后的人们做出的种种使不利支付发生的概率上升或保险公司赔偿的种种使不利支付发生的概率上升或保险公司赔偿金额增加的行为。如,买了住院保险的人病已痊愈金额增加的行为。如,买了住院保险的人病已痊愈而迟迟不肯出院,买了车辆盗窃保险的车主将没上而迟迟不肯出院,买了车辆盗窃保险的车主将没上锁的车随处停放,等等。若存在这些行为,那么,锁的车随处停放,等等。若存在这些行为,那么,保险公司按原来状况下的概

20、率计算的保险费率将使保险公司按原来状况下的概率计算的保险费率将使保险公司陷于财务危机,这一问题属于保险公司陷于财务危机,这一问题属于“不对称信不对称信息息”问题。问题。 消费者的目标是力求效用极大化,所以在选择消费者的目标是力求效用极大化,所以在选择投资资产时,均值投资资产时,均值-方差效用函数将成为消费者方差效用函数将成为消费者的目标函数。在风险投资市场上,对均值的目标函数。在风险投资市场上,对均值-方差方差效用函数构成的约束条件是什么呢?效用函数构成的约束条件是什么呢? 假定在投资市场上,消费者可以在两种资产中假定在投资市场上,消费者可以在两种资产中进行选择:一种是无风险资产(进行选择:一

21、种是无风险资产(Risk-free asset),这种资产能够保证投资者得到固定的这种资产能够保证投资者得到固定的rf作作为投资回报率或收益率,如,银行存款为无风险为投资回报率或收益率,如,银行存款为无风险资产;另一种为风险资产,这种资产的收益率是资产;另一种为风险资产,这种资产的收益率是事先无法确定和预知的,如,股票的收益率取决事先无法确定和预知的,如,股票的收益率取决于股市的走向和相关企业的经营状况。于股市的走向和相关企业的经营状况。 :第:第i种状态发生时风险资产的收益率;种状态发生时风险资产的收益率; :第:第i种状态发生的概率;种状态发生的概率; :风险资产的预期收益或未来收益的均值

22、;:风险资产的预期收益或未来收益的均值; :相应收益的标准差。(相应风险资产收:相应收益的标准差。(相应风险资产收益的标准差)若您不是一个走极端的投资者,您益的标准差)若您不是一个走极端的投资者,您多半会将财富同时分配在两种资产上,设投入风多半会将财富同时分配在两种资产上,设投入风险资产的比例为险资产的比例为X,则,投入无风险资产的比例,则,投入无风险资产的比例为为1-X。这样一种资产组合(。这样一种资产组合(Portfolio)的收益均)的收益均值值irimrmfrfmffrXxrniinirxiirXirxniixrxr)1(11)1()1(1结论:结论: 资产组合的预期收益是两种组合资产

23、预资产组合的预期收益是两种组合资产预期收益的加权平均。这一投资组合的方差为:期收益的加权平均。这一投资组合的方差为: niixfixrrxxr122)1 (fmxrxxrr)1 ( niniimiimixrrxxrxr112222)()(nimimixrrx12222)(结论:结论: 资产组合收益率的方差为风险资产收益资产组合收益率的方差为风险资产收益 率方差与风险资产所占比例平方的乘积。率方差与风险资产所占比例平方的乘积。 相应的标准差为:相应的标准差为: 在正常情况下,在正常情况下,r rm m应该大于应该大于r rf f,因为作,因为作为风险规避者的投资者的要求风险资产具有比为风险规避者

24、的投资者的要求风险资产具有比无风险资产更高的收益率,即无风险资产更高的收益率,即r rm mrrf f,所以在资,所以在资产组合中,风险资产的比例产组合中,风险资产的比例X X越高,预期收益越高,预期收益率越高,但未来收益的不确定性或风险也会相率越高,但未来收益的不确定性或风险也会相应增大。应增大。 ( mxx 资产组合均衡点为无差异曲线与预算约束线的切资产组合均衡点为无差异曲线与预算约束线的切点,此时风险与收益的边际替代率等于风险的价格。点,此时风险与收益的边际替代率等于风险的价格。xrmr*xrfr*mmABEx2U1U 图:资产组合选择图:资产组合选择 横轴表示资产组合收益的标准差,纵轴

25、表示横轴表示资产组合收益的标准差,纵轴表示均值,若投资者将所有的资产投入风险资产,均值,若投资者将所有的资产投入风险资产,即即X=1,那么均值,那么均值-标准差的组合为标准差的组合为 ,即,即图中的图中的B点;反之,若投资者将所有的资产投入点;反之,若投资者将所有的资产投入无风险资产,即无风险资产,即X=0,那么资产组合的均值,那么资产组合的均值-标标准差为(准差为(rf,O),即),即A点。若点。若0X1的资产的资产1610-8=1的资产的资产104-201的资产的资产5310的资产的资产235 若股票的值为若股票的值为1 1,则该股票与整个股市相同,则该股票与整个股市相同,若股市指数上升若

26、股市指数上升10%10%,它也应大致上升,它也应大致上升10%10%,若,若值大于值大于1 1,那么,该股票与大市同涨同跌,那么,该股票与大市同涨同跌,但幅度要大得多;若但幅度要大得多;若0101,则该股票与大市,则该股票与大市相比涨跌幅度要小一些;若相比涨跌幅度要小一些;若00时,即总资产报酬率(时,即总资产报酬率(R)高于债)高于债务利息率(务利息率(i),由(由(8)式可知,当)式可知,当 0 ,即,即Ri时。时。 资产负债率资产负债率() 越高,则净资产收益率(越高,则净资产收益率(r)也)也越高。如图越高。如图1所示所示(%)图图1:曲线(曲线(0)r当当=R-i0 ,即,即Ri时,

27、总资产报酬率(时,总资产报酬率(R)低于债务利息率(低于债务利息率(i)时,资产负债率)时,资产负债率() 越高,则越高,则净资产收益率(净资产收益率(r)越低。如图)越低。如图2所示所示图图2: 曲线(曲线(0,此时此时,企业有利可图(,企业有利可图( 0)当资产负债率当资产负债率 时,净资产收益率时,净资产收益率r=0,此时,企业无利可图(此时,企业无利可图( =0);); 当资产负债率当资产负债率 时,净资产收益率时,净资产收益率r0,此时,企业发生亏损(,此时,企业发生亏损( 0) 所以:所以: 资产负债率的盈亏临界点。资产负债率的盈亏临界点。由(由(7)式可知,当)式可知,当r=0时

28、时 即当资产负债率等于总资产报酬率(即当资产负债率等于总资产报酬率(R)与)与债务利息率(债务利息率(i)之比时,企业正好盈亏平衡,此)之比时,企业正好盈亏平衡,此时净资产收益率和利润率为零。时净资产收益率和利润率为零。 01m01m01m0iR0当资产负债率低于此点(当资产负债率低于此点( )时,企业盈利;当)时,企业盈利;当资产负债率高于此点(资产负债率高于此点( )时,企业亏损。)时,企业亏损。设企业预期净资产收益率为设企业预期净资产收益率为r ,达到,达到 r时的资产时的资产负债率为,企业为获得预期净资产收益率,在短期内负债率为,企业为获得预期净资产收益率,在短期内总资产报酬率(总资产

29、报酬率(R)和债务利息率()和债务利息率(i)不变的条件下,)不变的条件下,其资产负债率的合理确定,这是一个资产负债率决策其资产负债率的合理确定,这是一个资产负债率决策和控制的问题。和控制的问题。由(由(6)式可得资产负债率模型)式可得资产负债率模型 (10)所以达到预期净资产率所以达到预期净资产率r时的资产负债率为时的资产负债率为 00)()(rirR (11)例如:设某行业总资产报酬利率例如:设某行业总资产报酬利率R=问(问(A)企业拟获得企业拟获得r=以上的净资产收益率,该企业负以上的净资产收益率,该企业负债率应控制在什么范围?(债率应控制在什么范围?(B)资产负债率为)资产负债率为多少

30、时,企业开始出现亏损?解:由题意可知:多少时,企业开始出现亏损?解:由题意可知:R= R-i=i=(10-12)% =-2%0由(由(11)可得,)可得, =0.02/0.04=0.5,即即=50%该行业欲获得该行业欲获得8%以上的净资产收益率,其资以上的净资产收益率,其资产负债率不应超过产负债率不应超过50%)()(*rirR00*00008,12,10ri)/()(*rirR(B)将R= 代入盈亏的临界点计算公式: 即该企业的资产负债率为83.33时,企业净资产收益率为0;当资产负债率时,企业净资产收益率r,企业开始出现亏损。如图所示: 000012,10i0033.8312. 0/1 .

31、 0*iR0033.83图图3曲线(曲线(R=10%、i=12%、=-2%0) 结论:结论:1.资产负债率的高低是相对的,它随着资产负债率的高低是相对的,它随着总资产报酬率总资产报酬率R、债务利息率、债务利息率i、和预期净资产收、和预期净资产收益率益率r* 的改变而改变。(由(的改变而改变。(由(11)式可知)式可知) 2.企业经营的主要目的是提高净资产收益率企业经营的主要目的是提高净资产收益率r,它受总资产报酬率,它受总资产报酬率R、债务利息率、债务利息率i和资产负债和资产负债率不是目的,只是改善企业净资产收益率的一种率不是目的,只是改善企业净资产收益率的一种手段,所以不能就负债论负债;手段,所以不能就负债论负债; 3.通过资产重组提高国有资产配置效率是提高通过资产重组提高国有资产配置效率是提高资产运营效率和效益资产运营效率和效益-总资产报酬率,从而是总资产报酬率,从而是使国有企业摆脱目前困境的根本途径。使国有企业摆脱目前困境的根本途径。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(金融数学模型课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|