数学分析多元函数的极限与连续课件.pptx

上传人(卖家):三亚风情 文档编号:2506562 上传时间:2022-04-27 格式:PPTX 页数:16 大小:305.74KB
下载 相关 举报
数学分析多元函数的极限与连续课件.pptx_第1页
第1页 / 共16页
数学分析多元函数的极限与连续课件.pptx_第2页
第2页 / 共16页
数学分析多元函数的极限与连续课件.pptx_第3页
第3页 / 共16页
数学分析多元函数的极限与连续课件.pptx_第4页
第4页 / 共16页
数学分析多元函数的极限与连续课件.pptx_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、第十六章第十六章多元函数的极限与连续多元函数的极限与连续1 平面点集与多元函数 设设),(000yxP是是xoy平面上的一个点,平面上的一个点, 是某是某一正数,与点一正数,与点),(000yxP距离小于距离小于 的点的点),(yxP的全体,称为点的全体,称为点0P的的 邻域,记为邻域,记为),(0 PU,0P ),(0 PU |0PPP .)()(| ),(2020 yyxxyx (2)区域)区域.)(的内点的内点为为则称则称,的某一邻域的某一邻域一个点如果存在点一个点如果存在点是平面上的是平面上的是平面上的一个点集,是平面上的一个点集,设设EPEPUPPE .EE 的内点属于的内点属于EP

2、 .为开集为开集则称则称的点都是内点,的点都是内点,如果点集如果点集EE41),(221 yxyxE例如,例如,即为开集即为开集的边界点的边界点为为),则称),则称可以不属于可以不属于,也,也本身可以属于本身可以属于的点(点的点(点也有不属于也有不属于的点,的点,于于的任一个邻域内既有属的任一个邻域内既有属如果点如果点EPEEPEEPEP 的边界的边界的边界点的全体称为的边界点的全体称为 EE是连通的是连通的开集开集,则称,则称且该折线上的点都属于且该折线上的点都属于连结起来,连结起来,任何两点,都可用折线任何两点,都可用折线内内是开集如果对于是开集如果对于设设DDDD 连通的开集称为区域或开

3、区域连通的开集称为区域或开区域.41| ),(22 yxyx例如,例如,xyo开开区区域域连连同同它它的的边边界界一一起起称称为为闭闭区区域域.41| ),(22 yxyx例如,例如,xyo0| ),( yxyx有界闭区域;有界闭区域;无界开区域无界开区域xyo例如,例如,则称为无界点集则称为无界点集为有界点集,否为有界点集,否成立,则称成立,则称对一切对一切即即,不超过不超过间的距离间的距离与某一定点与某一定点,使一切点,使一切点如果存在正数如果存在正数对于点集对于点集EEPKAPKAPAEPKE 41| ),(22 yxyx(3)聚点)聚点 设设 E 是是平平面面上上的的一一个个点点集集,

4、P 是是平平面面上上的的一一个个点点,如如果果点点 P 的的任任何何一一个个邻邻域域内内总总有有无无限限多多个个点点属属于于点点集集 E,则则称称 P 为为 E 的的聚聚点点. 内点一定是聚点;内点一定是聚点; 边界点可能是聚点;边界点可能是聚点;10| ),(22 yxyx例例(0,0)既是既是边界点也是聚点边界点也是聚点 点集点集E的聚点可以属于的聚点可以属于E,也可以不属于,也可以不属于E10| ),(22 yxyx例如例如,(0,0) 是聚点但不属于集合是聚点但不属于集合1| ),(22 yxyx例如例如,边界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合(4)n维空间维空间

5、 设设n为为取取定定的的一一个个自自然然数数,我我们们称称n元元数数组组),(21nxxx的的全全体体为为n维维空空间间,而而每每个个n元元数数组组),(21nxxx称称为为n维维空空间间中中的的一一个个点点,数数ix称称为为该该点点的的第第i个个坐坐标标. n维空间的记号为维空间的记号为;nR n维空间中两点间距离公式维空间中两点间距离公式 ),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ n维空间中邻域、区域等概念维空间中邻域、区域等概念 nRPPPPPU ,|),(00 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空

6、间两点间的距离3, 2, 1 n内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义邻域:邻域:设两点为设两点为 设设D是平面上的一个点集,如果对于每个点是平面上的一个点集,如果对于每个点DyxP ),(,变量,变量z按照一定的法则总有确定的按照一定的法则总有确定的值和它对应,则称值和它对应,则称z是变量是变量yx,的二元函数,记为的二元函数,记为),(yxfz (或记为(或记为)(Pfz ). .(5)二元函数的定义)二元函数的定义当当2 n时时,n元元函函数数统统称称为为多多元元函函数数. 多元函数中同样有定义域、值域、自变量、多元函数中同样有定义域、值域、自变量、

7、因变量等概念因变量等概念.类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为., 42| ),(222yxyxyxD (6) 二元函数二元函数 的图形的图形),(yxfz 设函数设函数),(yxfz 的定义域为的定义域为D,对于任意,对于任意取定的取定的DyxP ),(,对应的函数值为,对应的函数值为),(yxfz ,这样,以,这样,以x为横坐标、为横坐标、y为纵坐为纵坐标、标、z为竖坐标在空间就确定一点为竖坐标在空间就确定一点),(zyxM,当当x取遍取遍D上一切点时,得一个空间点集上一切点时,得一个空间点集),(),(| ),(Dyxyxfzzyx ,这个点集称,这个点集称为二元函数的图形为二元函数的图形.(如下页图)(如下页图)二元函数的图形通常是一张曲面二元函数的图形通常是一张曲面.xyzoxyzsin 例如例如,图形如右图图形如右图.2222azyx 例如例如,左图球面左图球面.),(222ayxyxD 222yxaz .222yxaz 单值分支单值分支:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(数学分析多元函数的极限与连续课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|