1、11 1 货币的时间价值货币的时间价值一、货币时间价值的概念一、货币时间价值的概念 (一)货币时间价值的定义(一)货币时间价值的定义 (二)树立时间价值观念的意义(二)树立时间价值观念的意义1 1、使有限的资金得到最使有限的资金得到最充分充分的的利用利用; ;2 2、使财务决策建立在使财务决策建立在全面全面、客观客观、可比可比的基本础上的基本础上。 货币的时间价值,是指货币的时间价值,是指一定量一定量的货币在的货币在不同时点不同时点上价上价值量的值量的差额差额。 (三)货币时间价值的度量(三)货币时间价值的度量l 从理论上讲,货币的时间价值相当于没有风险、没从理论上讲,货币的时间价值相当于没有
2、风险、没有通货膨胀条件下的有通货膨胀条件下的社会平均资金利润率社会平均资金利润率;l 在实践中,如果通货膨胀率较低,可以用短期在实践中,如果通货膨胀率较低,可以用短期国债国债利率利率近似地表现货币的时间价值近似地表现货币的时间价值。2MPLPDPIPKK0 利息率利息率K0K 纯利率纯利率IP 通货膨胀补偿率通货膨胀补偿率DP 违约风险收益率违约风险收益率LP 流动风险收益率流动风险收益率MP 期限风险收益率期限风险收益率称为无风险利率 0IPKRf31 1 货币的时间价值货币的时间价值二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值l 一次性收付款项,指该款项的收、付均在某时点一
3、次性收付款项,指该款项的收、付均在某时点一次完成一次完成。l 现值,指未来某一时点上一定量的现金折合为现现值,指未来某一时点上一定量的现金折合为现在时刻的价值(在时刻的价值(P)。)。l 终值,指目前一定量的现金在未来某一时点上的终值,指目前一定量的现金在未来某一时点上的价值(价值(F)。)。41 1 货币的时间价值货币的时间价值 (一)单利(一)单利 单利单利计息方式,是指每期都按计息方式,是指每期都按初始本金初始本金计算利息,当计算利息,当期利息即使不取出也不计入下期本金。即,本生利,期利息即使不取出也不计入下期本金。即,本生利,利不利不再生利再生利。二、一次性收付款项的现值与终值二、一次
4、性收付款项的现值与终值期初期初利息利息期末期末期数期数1 1P PP P i iP + PP + P i i2 2P + PP + P i iP P i i3 3P P i in nP P i iP + P + 2 2 P P i iP + 3P + 3 P P i iP + nP + n P P i iP+2P+2 P P i iP+(n-1)P+(n-1) P P i i51 1 货币的时间价值货币的时间价值 (一)单利(一)单利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值I = I = p pi in n l 某人持有一张带息票据,面额为某人持有一张带息票据,面额为200
5、02000元,票面利率元,票面利率5%5%,出票日期为出票日期为8 8月月1212日,到期日为日,到期日为1111月月1010日(日(9090天)。天)。则该持有者到期可得利息为:则该持有者到期可得利息为: I = 2000I = 20005%5%90/360 = 2590/360 = 25(元)(元) 1 1、单利利息的计算、单利利息的计算61 1 货币的时间价值货币的时间价值 (一)单利(一)单利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值2 2、单利终值的计算、单利终值的计算F = P + PF = P + Pi in n = P(1+ n = P(1+ ni)i)l 某
6、人存入银行某人存入银行1515万元,若银行存款利率为万元,若银行存款利率为5%5%,5 5年后年后的本利和为多少?的本利和为多少? F = 15F = 15(1 + 51 + 55%5%)= 18.75= 18.75( (万元万元) )71 1 货币的时间价值货币的时间价值 (一)单利(一)单利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值3 3、单利现值的计算、单利现值的计算P = F / (1 + nP = F / (1 + ni) i) l 某人希望于某人希望于5 5年后取得本利和年后取得本利和10001000元,用以支付一笔元,用以支付一笔款项。在利率为款项。在利率为5%
7、5%,单利计息条件下,此人现在需存,单利计息条件下,此人现在需存入银行的资金为多少入银行的资金为多少 ? P= 1000/P= 1000/(1+51+55%5%)= 800(= 800(元元) )81 1 货币的时间价值货币的时间价值 (二)复利(二)复利 复利复利计息方式,是指以当期末本利和为计息基础计算计息方式,是指以当期末本利和为计息基础计算下期利息,即本生利,下期利息,即本生利,利还要生利利还要生利。二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值期初期初利息利息期末期末期数期数1 1P PP P i iP(1+i) P(1+i) 2 2P(1+i) P(1+i) P(1+
8、i) P(1+i) i i3 3P(1+i)P(1+i)2 2 i in nP(1+i)P(1+i)n-1n-1 i iP(1+i)P(1+i)2 2 P(1+i)P(1+i)3 3 P(1+i)P(1+i)n n P(1+i)P(1+i)2 2 P(1+i)P(1+i)n-1n-1 91 1 货币的时间价值货币的时间价值 (二)复利(二)复利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值1 1、复利终值的计算、复利终值的计算F = P (1 + i)F = P (1 + i)n nl (1+i)(1+i)n n 称为称为复利终值系数复利终值系数,记作:(,记作:(F/PF/P,
9、i i,n n)则:则:F = PF = P(F/PF/P,i i,n n)101 1 货币的时间价值货币的时间价值 (二)复利(二)复利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值l 某人将某人将20,00020,000元存放于银行,年存款利率为元存放于银行,年存款利率为6%6%,在,在复利计息方式下,三年后的本利和为多少?复利计息方式下,三年后的本利和为多少?12F=F=?20000200003F = 20000 (1+6%)F = 20000 (1+6%)3 3或:或:F = 20000F = 20000(F/PF/P,6%,36%,3) = 20000= 200001.
10、19101.1910 = 23820 = 23820111 1 货币的时间价值货币的时间价值 (二)复利(二)复利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值2 2、复利现值的计算、复利现值的计算P = F(1+i)P = F(1+i)-n-nl (1+i)(1+i)-n-n称为称为复利现值系数复利现值系数,记作:,记作:(P/F,i,nP/F,i,n)则:则: P = FP = F(P/FP/F,i i,n n)121 1 货币的时间价值货币的时间价值 (二)复利(二)复利二、一次性收付款项的现值与终值二、一次性收付款项的现值与终值2 2、复利现值的计算、复利现值的计算l 某
11、企业投资项目预计某企业投资项目预计6 6年后可获得收益年后可获得收益800800万元,按万元,按年利率年利率12%12%计算,则这笔钱的现值为多少万元?计算,则这笔钱的现值为多少万元?123456800800P=P=?i i =12%=12%P = 800(1 + 12%)P = 800(1 + 12%)-6-6或或: P = 800P = 800(P/FP/F,12%12%,6 6) = 800= 8000.50660.5066 = 405.28 = 405.2813二、普通年金二、普通年金l 年金是指一定时期内每次年金是指一定时期内每次等额等额收付的收付的系列款项系列款项,通,通常记作常记
12、作A A。l 年金按其每次收付发生的时点不同,可分为年金按其每次收付发生的时点不同,可分为普通普通年年金、金、即付即付年金、年金、递延递延年金、年金、永续永续年金等几种。年金等几种。l 普通年金是指,从普通年金是指,从第一期第一期起,在一定时期内每期起,在一定时期内每期期期末末等额发生的系列收付款项,又称等额发生的系列收付款项,又称后付后付年金。年金。0 03 31 1n-1n-1n n2 2AAAAA1 1 货币的时间价值货币的时间价值14二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(一)普通年金终值计算(一)普通年金终值计算A(1+i)A(1+i)0 03 31 1n-1n
13、-1n n2 2AAAAAF=?F=?+ + + + +A(1+i)A(1+i)n-3n-3A(1+i)A(1+i)n-2n-2A(1+i)A(1+i)n-1n-1= F= F(1+i)(1+i)0 015二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(一)普通年金终值计算(一)普通年金终值计算1231111nnniAiAiAiAAF nnniAiAiAiAiAiF111111122 - - iFAiAn 1iiAFn11式中式中:称为称为年金终值系数年金终值系数,记作记作:(F/A ,i,nF/A ,i,n)iin11所以:所以:F = AF = A(F/A ,i ,nF/A
14、,i ,n)16二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(一)普通年金终值计算(一)普通年金终值计算l 某人每年年末存入银行某人每年年末存入银行100100元,若年率为元,若年率为10%10%,则第,则第5 5年末可从银行一次性取出多少钱?年末可从银行一次性取出多少钱? 0 03 31 14 45 52 2A = 100A = 100F=?F=?i =10%i =10%F = 100F = 100(F/A ,10% ,5F/A ,10% ,5) = 100= 1006.1051 = 610.516.1051 = 610.51(元)(元)17二、普通年金二、普通年金1 1 货
15、币的时间价值货币的时间价值(二)年偿债基金计算(二)年偿债基金计算 偿债基金是指偿债基金是指, ,为了在约定的未来某一时点清偿某笔债务为了在约定的未来某一时点清偿某笔债务或积聚一定数额的资金或积聚一定数额的资金, ,而分次等额形成的存款准备金。年偿而分次等额形成的存款准备金。年偿债基金的计算实际上是年金终值的逆运算。债基金的计算实际上是年金终值的逆运算。0 03 31 1n-1n-1n n2 2A = ?A = ?F F18二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(二)年偿债基金计算(二)年偿债基金计算于是,于是,A = FA = F(A/FA/F,i i,n n) 由于偿
16、债基金系数与年金终值系数互为倒数,即:由于偿债基金系数与年金终值系数互为倒数,即: (A/FA/F,i i,n n) = 1/= 1/(F/AF/A,i, ni, n)所以,所以,A = F/A = F/(F/AF/A,i, ni, n)iiAFn11 11 niiFA式中,式中,称为称为偿债基金系数偿债基金系数,记作(,记作(A/FA/F,i i,n n)11nii19二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(二)年偿债基金计算(二)年偿债基金计算l 假设某企业有一笔假设某企业有一笔4 4年后到期的借款,到期值为年后到期的借款,到期值为10001000万元。若存款年利率为
17、万元。若存款年利率为10%10%,则为偿还该项借款应建,则为偿还该项借款应建立的偿债基金应为多少?立的偿债基金应为多少?10001000i =10%i =10%0 01 12 23 34 4A=?A=? A = 1000/ A = 1000/(F/A ,10% , 4F/A ,10% , 4) = 1000/4.6410 = 215.4= 1000/4.6410 = 215.4(万元)(万元)20二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(三)普通年金现值计算(三)普通年金现值计算+ + + + +A(1+i)A(1+i) 1 1 A(1+i) A(1+i) -2-2A(1+
18、i) A(1+i) -3-3A(1+i) A(1+i) - -(n-1n-1)A(1+i) A(1+i) -n-n0 03 31 1n-1n-1n n2 2A AA AA AA AA A= =P P21二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(三)普通年金现值计算(三)普通年金现值计算nniAiAiAiAiAP111111321 122111111nniAiAiAiAAiP - iPniAA1iiAPn11则:则:P = AP = A(P/A P/A ,i i ,n n)式中式中: :称为称为年金现值系数年金现值系数,记作,记作(P/A P/A ,i i ,n n) iin
19、 1122二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(三)普通年金现值计算(三)普通年金现值计算l 租入某设备,每年年未需要支付租金租入某设备,每年年未需要支付租金120120元,年复利率元,年复利率为为10%10%,则,则5 5年内应支付的租金总额的现值为多少元?年内应支付的租金总额的现值为多少元?0 03 31 14 45 52 2P=?P=?A=120A=120i=10%i=10%P = 120P = 120(P/AP/A,10%10%,5 5) = 120= 1203.79084553.7908455(元)(元) 23二、普通年金二、普通年金1 1 货币的时间价值货币
20、的时间价值(四)资本回收额计算(四)资本回收额计算0 03 31 1n-1n-1n n2 2A=?A=?P P 资本回收额资本回收额是指是指, ,在给定的年限内等额回收初始投入资本在给定的年限内等额回收初始投入资本或清偿所欠债务的价值指标。或清偿所欠债务的价值指标。24二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(四)资本回收额计算(四)资本回收额计算于是,于是,A = PA = P(A/PA/P,i i ,n n)由于资本回收系数与年金现值系数互为倒数,由于资本回收系数与年金现值系数互为倒数,即:(即:(A/P A/P ,i i ,n n)= 1/= 1/(P/A P/A ,
21、i, ni, n)所以,所以,A = P/A = P/(P/A P/A ,i, ni, n)iiAPn11 niiPA11 式中:式中:称为称为资本回收系数资本回收系数,记作,记作(A/P A/P ,i i ,n n)nii 1125二、普通年金二、普通年金1 1 货币的时间价值货币的时间价值(四)资本回收额计算(四)资本回收额计算l 某企业现在借得某企业现在借得10001000万元的贷款,在万元的贷款,在1010年内以年利年内以年利率率12%12%等额偿还,则每年应付的金额为多少万元?等额偿还,则每年应付的金额为多少万元?0 03 31 19 910102 2A=?A=?10001000i
22、= 12%i = 12%A = 1000/A = 1000/(P/A,12%,10P/A,12%,10) = 1000/5.6502177= 1000/5.6502177(万元)(万元)26三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值 即付年金即付年金是指从是指从第一期第一期起,在一定时期内起,在一定时期内每期期初每期期初等额等额收付的系列款项,又称收付的系列款项,又称先付先付年金、年金、预付预付年金。年金。0 03 31 1n-1n-1n n2 2A AA AA AA AA A27三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(一)即付年金终值的计算(一)即付年
23、金终值的计算方法一:方法一:0 03 31 1n-1n-1n n2 2A AA AA AA AA A F FFF F= A F= A(F/AF/A,i i,n)n) F = F(1+i) F = F(1+i) = A = A(F/AF/A,i i,n) (1+i)n) (1+i)28三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(一)即付年金终值的计算(一)即付年金终值的计算方法二:方法二:0 03 31 1n-1n-1n n2 2A AA AA AA AA A F F F + A = A F + A = A(F/AF/A,i i,n+1)n+1) F = A F = A(F/A
24、F/A,i i,n+1) n+1) A A = A = A(F/AF/A,i i,n+1)-1n+1)-1A A+ + A A29三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(一)即付年金终值的计算(一)即付年金终值的计算l 某公司决定连续某公司决定连续5 5年于每年年初存入年于每年年初存入100100万元作为住房万元作为住房基金,银行存款利率为基金,银行存款利率为10%10%。问:该公司在第。问:该公司在第5 5年末能年末能一次取出的本利和为多少?一次取出的本利和为多少? 0 03 31 14 45 52 2A=100A=100 F Fi =10%i =10%方法一:方法一:
25、 F = 100 F = 100(F/A F/A ,10% 10% ,5 5)(1+10% )(1+10% ) = 100 = 1006.10516.10511.1 = 671.56(1.1 = 671.56(万元万元) ) 30三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(一)即付年金终值的计算(一)即付年金终值的计算l 某公司决定连续某公司决定连续5 5年于每年年初存入年于每年年初存入100100万元作为住房万元作为住房基金,银行存款利率为基金,银行存款利率为10%10%。问:该公司在第。问:该公司在第5 5年末能年末能一次取出的本利和为多少?一次取出的本利和为多少? 0
26、03 31 14 45 52 2A=100A=100 F Fi =10%i =10%方法二:方法二:+ A+ A F = 100 F = 100(F/A F/A ,10% 10% ,6 6)-100-100 = 100 = 100(F/AF/A,10%10%,6 6)-1-1 = 1007.7156-1 = 671.56( = 1007.7156-1 = 671.56(万元万元) ) 31三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(二)即付年金现值的计算(二)即付年金现值的计算方法一:方法一: P= A P= A(P/AP/A,i i,n)n) P = P(1+i) P =
27、P(1+i) = A = A(P/AP/A,i i,n) (1+i)n) (1+i)0 03 31 1n-1n-1n n2 2A AA AA AA AA AP=P=?PP32三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(二)即付年金现值的计算(二)即付年金现值的计算方法二:方法二:0 03 31 1n-1n-1n n2 2A AA AA AA AA AP=P=? P = A + A P = A + A(P/AP/A,i i,n-1)n-1) = A1 + = A1 +(P/AP/A,i i,n-1)n-1)33三、即付年金三、即付年金1 1 货币的时间价值货币的时间价值(二)即
28、付年金现值的计算(二)即付年金现值的计算l 当银行利率为当银行利率为10%10%时,一项时,一项6 6年分期付款的购货,每年年分期付款的购货,每年初付款初付款200200元,该项分期付款相当于第一年初一次现元,该项分期付款相当于第一年初一次现金支付的购价为多少元?金支付的购价为多少元? 0 03 31 15 56 62 2200200P=P=?4 4方法一:方法一:PP P = 200 P = 200(P/AP/A,10%10%,6) (1+10%)6) (1+10%) = 200 = 2004.35534.35531.11.1 = 958.16( = 958.16(元元) )34三、即付年金
29、三、即付年金1 1 货币的时间价值货币的时间价值(二)即付年金现值的计算(二)即付年金现值的计算l 当银行利率为当银行利率为10%10%时,一项时,一项6 6年分期付款的购货,每年年分期付款的购货,每年初付款初付款200200元,该项分期付款相当于第一年初一次现元,该项分期付款相当于第一年初一次现金支付的购价为多少元?金支付的购价为多少元? 0 03 31 15 56 62 2200200P=P=?4 4方法二:方法二: P = 200 + 200 P = 200 + 200(P/AP/A,10%10%,5) 5) = 200(P/A,10%,5)+1 = 200(P/A,10%,5)+1 =
30、 200(3.7908+1) = 200(3.7908+1) = 958.16( = 958.16(元元) )35四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值 递延年金递延年金是指第一次收付款发生时间与是指第一次收付款发生时间与第一期无关第一期无关,而,而是隔若干期(假设为是隔若干期(假设为S S期,期,S1S1)后才开始发生的系列等额)后才开始发生的系列等额收付款项。收付款项。0 01 1s s2 2n ns+3s+3n-1n-1A As+2s+2s+1s+1A AA AA AA A36四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价
31、值方法一:方法一:PP =A=A(P/AP/A,i i,n-sn-s)P P = P(P/F= P(P/F,i i,s)s) P = A (P/A, i, n-s )(P/F, i, s) P = A (P/A, i, n-s )(P/F, i, s) 0 01 1s s2 2n ns+3s+3n-1n-1A As+2s+2s+1s+1A AA AA AA A37四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值方法二:方法二:P = A (P/A, i, n ) - A (P/A, i, s ) P = A (P/A, i, n ) - A (P/A, i, s )
32、 = A (P/A, i, n ) - (P/A, i, s ) = A (P/A, i, n ) - (P/A, i, s ) A AA AA A0 01 1s s2 2n ns+3s+3n-1n-1A As+2s+2s+1s+1A AA AA AA A38四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值0 01 1s s2 2n ns+3s+3n-1n-1A As+2s+2s+1s+1A AA AA AA A方法三:方法三:P P= F(P/F= F(P/F,i i,n)n)=A=A(F/AF/A,i i,n-sn-s)F F P = A (F/A, i, n-
33、P = A (F/A, i, n-s ) (P/F, i, n ) ) (P/F, i, n ) 39四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值l 某人在年初存入一笔资金,存满某人在年初存入一笔资金,存满5 5年后每年末取出年后每年末取出10001000元,至第元,至第1010年末取完,银行存款利率为年末取完,银行存款利率为10%10%。则此人应。则此人应在最初一次存入银行多少钱?在最初一次存入银行多少钱? 方法一:方法一:PPP P = 1000P = 1000(P/A, 10%, 5 )P/A, 10%, 5 )(P/F, 10%, 5P/F, 10%,
34、5) = 1000= 10003.79083.79080.6209 23540.6209 2354(元)(元)0 01 15 52 210108 89 910007 76 64 43 340四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值l 某人在年初存入一笔资金,存满某人在年初存入一笔资金,存满5 5年后每年末取出年后每年末取出10001000元,至第元,至第1010年末取完,银行存款利率为年末取完,银行存款利率为10%10%。则此人应。则此人应在最初一次存入银行多少钱?在最初一次存入银行多少钱? 方法二:方法二:0 01 15 52 210108 89 9100
35、07 76 64 43 3 P = 1000(P/A, 10%, 10 )-(P/A, 10%, 5)P = 1000(P/A, 10%, 10 )-(P/A, 10%, 5) = 1000 6.1446-3.7908 2354 = 1000 6.1446-3.7908 2354(元)(元)41四、递延年金现值计算四、递延年金现值计算1 1 货币的时间价值货币的时间价值l 某人在年初存入一笔资金,存满某人在年初存入一笔资金,存满5 5年后每年末取出年后每年末取出10001000元,至第元,至第1010年末取完,银行存款利率为年末取完,银行存款利率为10%10%。则此人应。则此人应在最初一次存入
36、银行多少钱?在最初一次存入银行多少钱? 方法三:方法三:0 01 15 52 210108 89 910007 76 64 43 3F FP P = 1000 ( F/A, 10%, 5 ) (P/F, 10%, 10)P = 1000 ( F/A, 10%, 5 ) (P/F, 10%, 10) = 1000 = 1000 6.1051 6.10510.385523540.3855235442五、永续年金现值计算五、永续年金现值计算1 1 货币的时间价值货币的时间价值 永续年金永续年金是指是指无限期等额收付无限期等额收付的特种年金,可视为普通的特种年金,可视为普通年金的特殊形式,即期限趋于无
37、穷大的普通年金。年金的特殊形式,即期限趋于无穷大的普通年金。0 01 1s s2 2nns+3s+3n-1n-1s+2s+2s+1s+1A AA AA AA AA AA AA AA A 当当 n ,(1+i)n ,(1+i)-n-n 0, 0, iiAPn11 iAP 43五、永续年金现值计算五、永续年金现值计算1 1 货币的时间价值货币的时间价值l 拟建立一项永久性的奖学金,每年计划颁发拟建立一项永久性的奖学金,每年计划颁发1000010000元元奖金。若年利率为奖金。若年利率为10%10%,现在应存入多少钱?,现在应存入多少钱?l 某人持有的某公司优先股,每年每股股利为某人持有的某公司优先
38、股,每年每股股利为2 2元,若此元,若此人想长期持有,在利率为人想长期持有,在利率为10%10%的情况下,请对该项股票的情况下,请对该项股票投资进行估价。投资进行估价。元100000%1010000 P元20%102 P441 1 货币的时间价值货币的时间价值 (一)插值法的应用(一)插值法的应用l 某公司于年初借款某公司于年初借款 20 00020 000元,每年年末还本付息元,每年年末还本付息4 4 000000元,连续元,连续9 9年还清。问借款利率为多少?年还清。问借款利率为多少?0 01 12 23 34 45 56 67 78 89 920 00020 0004 0004 000i
39、 = ?i = ?由题意知:由题意知:4 0004 000(P/AP/A,i i,9 9)= 20 000= 20 000 所以:(所以:(P/AP/A,i i,9 9)= 20 000 / 4 000 = 5 = 20 000 / 4 000 = 5 六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题451 1 货币的时间价值货币的时间价值六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题(P/A,i,9)(P/A,i,9)0 0i12%12%5.32825.328214%14%4.91644.9164i=?i=?5 5 a ab bC Cd dbdcad
40、cbaai%12%12%149164. 43282. 553282. 5%12%59.13 (一)插值法的应用(一)插值法的应用461 1 货币的时间价值货币的时间价值六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题i i(P/AP/A,i i,9 9)i i12%12%5.32825.32825 514%14%4.91644.9164a ab bc cd dbdcaai%12%12%149164. 43282. 553282. 5%12%59.13dcba (一)插值法的应用(一)插值法的应用471 1 货币的时间价值货币的时间价值六、复利计算过程中应注意的两个问题六、复
41、利计算过程中应注意的两个问题l 某企业拟购买一台柴油机以更新目前所用的汽油机。购某企业拟购买一台柴油机以更新目前所用的汽油机。购买柴油机与继续使用汽油机相比,将增加投资买柴油机与继续使用汽油机相比,将增加投资20002000元,元,但每年可节约燃料费用但每年可节约燃料费用500500元。若利率为元。若利率为10%10%,求柴油机,求柴油机应至少使用多少年对企业而言才有利?应至少使用多少年对企业而言才有利? 0 01 12 23 3n-2n-2n-1n-1 n = ?n = ?2 0002 000500500i = 10%i = 10% 500 500(P/AP/A,10%10%,n n)= 2
42、000= 2000(P/AP/A,10%10%,n n)= 2000 / 500 = 4 = 2000 / 500 = 4 (一)插值法的应用(一)插值法的应用481 1 货币的时间价值货币的时间价值六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题查表得:(查表得:(P/A,10%,5P/A,10%,5)= 3.7908 = 3.7908 ;(;(P/A,10%,6P/A,10%,6)= 4.3553= 4.3553n n(P/AP/A,10%10%,n n) n n 5 53.79083.79084 4 6 64.35534.3553a ab bc cd dbdcaan
43、5567908. 33553. 47908. 345年4.5 (一)插值法的应用(一)插值法的应用491 1 货币的时间价值货币的时间价值 (二)名义利率与实际利率的换算(二)名义利率与实际利率的换算六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题l 名义利率,是指每年结息次数超过一次时的年利率。名义利率,是指每年结息次数超过一次时的年利率。l 或,名义利率等于短于一年的周期利率与年内计息或,名义利率等于短于一年的周期利率与年内计息次数的乘积。次数的乘积。l 实际利率,是指在一年内实际所得利息总额与本金实际利率,是指在一年内实际所得利息总额与本金之比。之比。501 1 货币
44、的时间价值货币的时间价值 (二)名义利率与实际利率的换算(二)名义利率与实际利率的换算六、复利计算过程中应注意的两个问题六、复利计算过程中应注意的两个问题设:名义利率为设:名义利率为r r,每年计息次数为,每年计息次数为m m,则,每次计息的周期利率为则,每次计息的周期利率为r/mr/m,如果本金为一元,复利计息,如果本金为一元,复利计息,式中,式中, i 即为实际利率。即为实际利率。则:一年后的本利和为则:一年后的本利和为mmr111mmri 511 1 货币的时间价值货币的时间价值 (二)名义利率与实际利率的换算(二)名义利率与实际利率的换算六、复利计算过程中应注意的两个问题六、复利计算过
45、程中应注意的两个问题l 设:某人存入银行设:某人存入银行10001000元,年利率元,年利率8%8%,每季复利一,每季复利一次,问次,问5 5年后可取出多少钱?年后可取出多少钱?解(一):解(一):r = 8% r = 8% ; m = 4 m = 4 ; = 8.24321% = 8.24321% F = 1000F = 1000(1+8.24321%1+8.24321%)5 5 = 1485.9474= 1485.9474 14%814 i 521 1 货币的时间价值货币的时间价值 (二)名义利率与实际利率的换算(二)名义利率与实际利率的换算六、复利计算过程中应注意的两个问题六、复利计算过
46、程中应注意的两个问题l 设:某人存入银行设:某人存入银行10001000元,年利率元,年利率8%8%,每季复利一,每季复利一次,问次,问5 5年后可取出多少钱?年后可取出多少钱?解(二):解(二):r/m = 8%/4 = 2% r/m = 8%/4 = 2% ;t = 4t = 45=205=20 F = 1000F = 1000(F/P,2%,20F/P,2%,20) = 1000= 10001.48591.4859 = 1485.9 = 1485.9532 2 风险与报酬风险与报酬风险与报酬均衡的观念风险与报酬均衡的观念l 风险总是与报酬结伴而行的风险总是与报酬结伴而行的l 承担风险,应
47、该得到相应的报酬补偿承担风险,应该得到相应的报酬补偿542 2 风险与报酬风险与报酬一、风险与报酬概述一、风险与报酬概述 (一)投资报酬(一)投资报酬 1 1、投资报酬的含义、投资报酬的含义l 报酬额,由两部分组成:期限内资产的现金净收入;报酬额,由两部分组成:期限内资产的现金净收入;期末资产价值相对期初价值的升值;期末资产价值相对期初价值的升值; l 报酬率,指报酬额与投资额之比率报酬率,指报酬额与投资额之比率。 投资报酬投资报酬,指投入资产的价值在一定期限内的增值,指投入资产的价值在一定期限内的增值量。量。552 2 风险与报酬风险与报酬l 实际报酬率,已经实现的或者确定可以实现的报实际报
48、酬率,已经实现的或者确定可以实现的报酬率;酬率; l 名义报酬率,指在合约上标明的报酬率;名义报酬率,指在合约上标明的报酬率; l 预期报酬率,指在不确定的条件下,预测的某项预期报酬率,指在不确定的条件下,预测的某项投资未来可能实现的报酬率。投资未来可能实现的报酬率。 2 2、报酬率的类型、报酬率的类型一、风险与报酬概述一、风险与报酬概述 (一)投资报酬(一)投资报酬562 2 风险与报酬风险与报酬l 必要报酬率,指投资者对某项投资要求的最低报必要报酬率,指投资者对某项投资要求的最低报酬率;酬率; l 无风险报酬率,指可以确定无风险的资产的报酬无风险报酬率,指可以确定无风险的资产的报酬率;率;
49、 l 风险报酬率,指投资者因承担风险而要求的超过风险报酬率,指投资者因承担风险而要求的超过无风险报酬的额外报酬率。无风险报酬的额外报酬率。 一、风险与报酬概述一、风险与报酬概述 (一)投资报酬(一)投资报酬2 2、报酬率的类型、报酬率的类型572 2 风险与报酬风险与报酬l 风险是预期结果的不确定性;风险是预期结果的不确定性; l 风险不仅意味着失败的威胁,同时也意味着成功风险不仅意味着失败的威胁,同时也意味着成功的机会。的机会。 1 1、风险的含义、风险的含义一、风险与报酬概述一、风险与报酬概述 (二)投资风险(二)投资风险582 2 风险与报酬风险与报酬l 经营风险,是指生产经营活动中的不
50、确定因素给经营风险,是指生产经营活动中的不确定因素给企业盈利带来的不确定性;企业盈利带来的不确定性;l 财务风险,是指因筹资而使企业盈利增加的不确财务风险,是指因筹资而使企业盈利增加的不确定性。定性。 2 2、风险的类型、风险的类型1 1)按产生的原因分类:)按产生的原因分类:一、风险与报酬概述一、风险与报酬概述 (二)投资风险(二)投资风险592 2 风险与报酬风险与报酬l 可分散风险,又称公司特有风险、非系统风险可分散风险,又称公司特有风险、非系统风险, ,指指发生于个别公司的特有事件造成的风险;发生于个别公司的特有事件造成的风险;l 不可分散风险,又称市场风险、系统风险不可分散风险,又称