1、典型时间函数典型时间函数拉普拉斯变换拉普拉斯变换拉普拉斯变换拉普拉斯变换 系统的数学模型以微分方程的形式表达输出与输入的关系统的数学模型以微分方程的形式表达输出与输入的关系。经典控制理论的系。经典控制理论的:时域法、频域法。:时域法、频域法。2. 数学模型与传递函数 频域分析法是经典控制理论的核心,被广泛采用,该方频域分析法是经典控制理论的核心,被广泛采用,该方法间接地运用系统的开环频率特性分析闭环响应。法间接地运用系统的开环频率特性分析闭环响应。复数和复变函数复数和复变函数 复数复数 (有一个实部(有一个实部 和一个虚部和一个虚部 , 和和 均为实数)均为实数) 两个复数相等:当且仅当它们的
2、实部和虚部分别相等。两个复数相等:当且仅当它们的实部和虚部分别相等。 一个复数为零:当且仅当它的实部和虚部同时为零。一个复数为零:当且仅当它的实部和虚部同时为零。 2.2 拉普拉普拉斯变换拉斯变换1j称为称为 对于复数对于复数 :以:以为横坐标为横坐标(实轴实轴)、 为纵坐标为纵坐标(虚轴虚轴)所构成所构成的平面称为复平面或的平面称为复平面或 平面。复数平面。复数 可在复平面可在复平面 中用中用点点()表示:一个复数对应于复平面上的一个点。表示:一个复数对应于复平面上的一个点。 2.2.1 复数和复变函数复数和复变函数 o复平面复平面 1 2j 1 2s1= 1+j 1s2= 2+j 2 复数
3、复数 可以用从原点指向点可以用从原点指向点()的向量表示。的向量表示。 向量的长度称为复数的模:向量的长度称为复数的模: 2.2.1 复数和复变函数复数和复变函数 o 1 2j s1s2r1=|s1|r2=|s2|22 rs 向量与向量与轴的夹角轴的夹角称称为复数为复数 的复角:的复角:)/arctan( 根据复平面的图示可得:根据复平面的图示可得:,2.2.1 复数和复变函数复数和复变函数 o 1 2j s1s2r1=|s1|r2=|s2|欧拉公式:欧拉公式:sinjcosje:jres 以复数以复数为自变量构成的函数为自变量构成的函数称为复变函数:称为复变函数: :分别为复变函数的实部和虚
4、部。分别为复变函数的实部和虚部。2.2.1 复数和复变函数复数和复变函数(a) 当当时,时,则,则称为称为的的 ; 通常,在线性控制系统中,复变函数通常,在线性控制系统中,复变函数是复数是复数 的单值的单值函数。即:对应于函数。即:对应于 的一个给定值,的一个给定值,就有一个唯一确定的就有一个唯一确定的值与之相对应。值与之相对应。)()()(jipszsksG 当复变函数表示成当复变函数表示成(b) 当当时,时,则,则称为称为的的 。当当时,求复变函数时,求复变函数 的实部的实部 和虚部和虚部 。2.2.1 复数和复变函数复数和复变函数复变函数的实部复变函数的实部122u复变函数的虚部复变函数
5、的虚部2v: 拉普拉斯变换的定义拉普拉斯变换的定义 拉氏变换是控制工程中的一个基本数学方法,其优点是能拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量将时间函数的导数经拉氏变换后,变成复变量 的乘积,将时的乘积,将时间表示的微分方程,变成以间表示的微分方程,变成以 表示的代数方程。表示的代数方程。2.2 拉普拉普拉斯变换拉斯变换0d)()()(tetftfLsFst复变量复变量原函数原函数象函数象函数拉氏变换符号拉氏变换符号:在一定条件下,把实数域中的实变函数:在一定条件下,把实数域中的实变函数 f(t) 变变换到复数域内与之等价的复变函数换到复数域内
6、与之等价的复变函数 F(s) 。 设有时间函数设有时间函数 f(t),当,当 t a的所有复数的所有复数s (Res表示表示s的实部的实部)都都使积分式绝对收敛,故使积分式绝对收敛,故Res a是拉普拉斯变换的定义域,是拉普拉斯变换的定义域, a称称为收敛坐标。为收敛坐标。:M、a为实常数。为实常数。典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换 (1) 单位阶跃函数定义:单位阶跃函数定义:2.2 拉普拉普拉斯变换拉斯变换0, 10, 0)( 1ttt0001dd)( 1)( 1stststestetettL:sesesstt111lim0 单位脉冲函数定义:单位脉冲函数定义:2.2.3
7、 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换1d)(tt且:且:0, 00,)(ttt(0)d)()(fttft:1d)()(00tststetettL 单位速度函数定义:单位速度函数定义:2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换0,00)(ttttf: 00d1dststetsttetL2020011d11sestese tsststst 指数函数表达式:指数函数表达式:2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换atetf)(式中:式中:a是常数。是常数。:asteteeeLtasstatat1dd0)(0 正弦信号函数定义:正弦信号函
8、数定义:2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换0,sin00)(ttttf由欧拉公式,正弦函数表达为:由欧拉公式,正弦函数表达为:tjtjj21sin-eetttesinjcostjtte-sinjcostj两式相减两式相减:0tjtj0dj21dsinsinteeetettLst-st220t )j(t )j(j1j1j21dj21sss-tees-s- 余弦信号函数定义:余弦信号函数定义:2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换0,cos00)(ttttf由欧拉公式,余弦函数表达为:由欧拉公式,余弦函数表达为:tjtj21cos-eettt
9、esinjcostjtte-sinjcostj两式相加两式相加:0tjtj0d21dcoscosteeetettLst-st220t )j(t )j(j1j121d21ssss-tees-s-2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s)=Lf(t)11 (单位阶跃函数单位阶跃函数)1s2 (t) (单位脉冲函数单位脉冲函数)13K (常数常数)Ks4t (单位斜坡函数单位斜坡函数)1s22.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s
10、) = Lf(t)5t n (n=1, 2, )n!s n+16e -at1s + a7tn e -at (n=1, 2, )n!(s+a) n+18 1 T1Ts + 1tTe2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s) = Lf(t)9sin t s2+ 210cos tss2+ 211e -at sin t (s+a)2+ 212e -at cos ts+a(s+a)2+ 22.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s) =
11、 Lf(t)13 (1- -e -at )1s(s+a)14 (e -at - -e -bt )1(s+a) (s+b)15 (b be -bt - -ae at )s(s+a) (s+b)16sin( t + ) cos + s sin s2+ 21a1b- -a1b- -a2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s) = Lf(t)17 e -nt sin n 1- - 2 t n2s2+2ns+ n218 e -nt sin n 1- - 2 t1s2+2ns+ n219 e -nt sin( n 1- - 2 t - - )ss2+2ns+ n2 = arctan n1- - 21 n 1- - 211- - 21- - 2 2.2.3 典型时间函数的拉普拉斯变换典型时间函数的拉普拉斯变换序号序号原函数原函数 f(t) (t 0)象函数象函数 F(s) = Lf(t)20 1- - e -nt sin( n 1- - 2 t + + ) n2s(s2+2ns+ n2) = arctan211- -cos t 2s(s2+ 2)22 t - - sin t 2s(s2+ 2)23 t sin t2 s(s2+ 2)211- - 21- - 2