概率论的基本概念-PPT课件.ppt

上传人(卖家):三亚风情 文档编号:2602463 上传时间:2022-05-10 格式:PPT 页数:119 大小:1.24MB
下载 相关 举报
概率论的基本概念-PPT课件.ppt_第1页
第1页 / 共119页
概率论的基本概念-PPT课件.ppt_第2页
第2页 / 共119页
概率论的基本概念-PPT课件.ppt_第3页
第3页 / 共119页
概率论的基本概念-PPT课件.ppt_第4页
第4页 / 共119页
概率论的基本概念-PPT课件.ppt_第5页
第5页 / 共119页
点击查看更多>>
资源描述

1、概率论与数理统计是研究什么的?概率论与数理统计是研究什么的?什么是随机现象?什么是随机现象?什么是统计规律性?什么是统计规律性?概率论与数理统计主要内容概率论与数理统计主要内容概率论的基本概念概率论的基本概念随机变量及其分布随机变量及其分布多维随机变量及其分布多维随机变量及其分布随机变量的数字特征随机变量的数字特征大数定律及中心极限定理大数定律及中心极限定理参考教材:参考教材:概率论与数理统计概率论与数理统计 盛骤谢式千潘承毅主编盛骤谢式千潘承毅主编高等教育出版社高等教育出版社样本及抽样分布样本及抽样分布参数估计参数估计假设检验假设检验方差分析及回归分析方差分析及回归分析退出退出概率论的基本概

2、念概率论的基本概念随机试验、样本空间、随机事件随机试验、样本空间、随机事件频率与概率频率与概率等可能概型(古典概型)等可能概型(古典概型)几何概率几何概率概率的一般定义概率的一般定义条件概率条件概率独立性独立性返回返回退出退出本章小结本章小结习题习题随机试验是具有以下特征的试验:可以在相随机试验是具有以下特征的试验:可以在相同条件下重复进行;每次试验的结果不止一个,同条件下重复进行;每次试验的结果不止一个,但结果事先可以预知;每次试验前不能确定哪个但结果事先可以预知;每次试验前不能确定哪个结果会出现。结果会出现。样本空间、样本点样本空间、样本点 随机试验的所有可能结果的集合称为样本空间。随机试

3、验的所有可能结果的集合称为样本空间。试验的每试验的每个可能结果称为样本点。记为个可能结果称为样本点。记为S Se e。随机试验随机试验例例1 1:E E1 1:抛一枚硬币,观察正面、反面了出现的情况。:抛一枚硬币,观察正面、反面了出现的情况。 S S1 1:HH,TT; E E:将一枚硬币抛掷三次,观察正面:将一枚硬币抛掷三次,观察正面H H、反面、反面T T出现的情况。出现的情况。S S2 2:HHHHHH,HHTHHT,HTHHTH,THHTHH,HTTHTT,THTTHT,TTHTTH,TTTTTT; E E:将一枚硬币抛掷三次,观察出现正面的次数。:将一枚硬币抛掷三次,观察出现正面的次

4、数。 S S3 3:00,1 1,2 2,33; E E:抛一颗骰子,观察出现的点数。:抛一颗骰子,观察出现的点数。 S S4 4:1 1,2 2,3 3,4 4,5 5,66; E E:记录某城市:记录某城市120120急救电话台一昼夜接到的呼唤次数。急救电话台一昼夜接到的呼唤次数。 S S5 5:00,l l,2 2,3 3, ; E E:在一批灯泡中任意抽取一只,测试它的寿命。:在一批灯泡中任意抽取一只,测试它的寿命。 S S6 6:t tt0t0; E E:记录某地一昼夜的最高温度和最低温度。:记录某地一昼夜的最高温度和最低温度。S S7 7:(x(x,y) y) T T0 0 xyT

5、xyT1 1 ,这里,这里x x示最低温度,示最低温度,y y表示最高表示最高温度,并设这一地区的温度不会小于温度,并设这一地区的温度不会小于T To o,也不会大于,也不会大于T T1 1。试验试验E E的的样本空间样本空间S S的子集称为试验的随机事件,简的子集称为试验的随机事件,简称事件。在每次试验中,当且仅当这一子集中的一个样称事件。在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。本点出现时,称这一事件发生。随机事件随机事件基本事件(简单事件)、复合事件基本事件(简单事件)、复合事件由一个样本点组成的单点集,称为基本事件。由两由一个样本点组成的单点集,称为基本事件。

6、由两个或两个以上样本点组成的集合,称为复合事件。个或两个以上样本点组成的集合,称为复合事件。必然事件、不可能事件必然事件、不可能事件样本空间样本空间S S包含所有的样本点,它是包含所有的样本点,它是S S自身的子集,自身的子集,在每次试验中它总是发生的,称为必然事件。在每次试验中它总是发生的,称为必然事件。空集空集不包含任何样本点,它也作为样本空间的不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件。子集,它在每次试验中都不发生,称为不可能事件。例例2 2:在在E E中事件中事件A A:“第一次出现的是第一次出现的是H”H”,即,即A AHHHHHH,HHTHHT

7、,HTHHTH,HTTHTT; 事件事件A A:“三次出现同一面三次出现同一面”,即,即A A2 2HHHHHH,TTTTTT; 在在E E中事件中事件A A3 3 :“寿命小于寿命小于10001000小时小时”,即,即A A3 3t t0t0t10001000; 在在E E中事件中事件A A3 3:“最高温度和最低温度相差最高温度和最低温度相差1010摄氏度摄氏度”,即,即A A7 7(x(x,y) y) y-x=10,Ty-x=10,T0 0 xyTxyT1 1 。例例3 3:某袋中装有某袋中装有4 4只白球和只白球和2 2只黑球,我们考虑依次从中摸出两球所只黑球,我们考虑依次从中摸出两球

8、所可能出现的事件。若对球进行编号,可能出现的事件。若对球进行编号,4 4只白球分别编为只白球分别编为1 1,2 2,3 3,4 4号,号,2 2只黑球编为只黑球编为5 5,6 6号。如果用数对号。如果用数对(i(i,j)j)表示第一次摸得表示第一次摸得i i号球,第二次摸得号球,第二次摸得j j号球,则可能出现的结果是号球,则可能出现的结果是 (1 (1,2)2),(1(1,3)3),(1(1,4)4),(1(1,5)5),(1(1,6)6) (2 (2,1)1),(2(2,3)3),(2(2,4)4),(2(2,5)5),(2(2,6)6) (3 (3,1)1),(3(3,2)2),(3(3

9、,4)4),(3(3,5)5),(3(3,6)6) (4 (4,1)1),(4(4,2)2),(4(4,3)3),(4(4,5)5),(4(4,6)6) (5 (5,1)1),(5(5,2)2),(5(5,3)3),(5(5,4)4),(5(5,6)6) (6 (6,1)1),(6(6,2)2),(6(6,3)3),(6(6,4)4),(6(6,5)5) 把这把这3030个结果作为样本点,则构成了样本空间。在这个问个结果作为样本点,则构成了样本空间。在这个问题中,这些样本点是我们感兴趣的事件;但是我们也可以研究题中,这些样本点是我们感兴趣的事件;但是我们也可以研究下面另外一些事件:下面另外一些

10、事件: A A:第一次摸出黑球;:第一次摸出黑球; B B:第二次摸出黑球;:第二次摸出黑球; C C:第一次及第二次都摸出黑球:第一次及第二次都摸出黑球 后面这些事件与前面那些事件的不同处在于这些事件是可后面这些事件与前面那些事件的不同处在于这些事件是可以分解的,例如为了以分解的,例如为了A A出现必须而且只须下列样本点之一出现:出现必须而且只须下列样本点之一出现: (5(5,1)1),(5(5,2)2),(5(5,3)3),(5(5,4)4),(5(5,6)6) (6 (6,1)1),(6(6,2)2),(6(6,3)3),(6(6,4)4),(6(6,5)5)事件间的关系事件间的关系包含

11、:,称事件包含:,称事件B B包含事件包含事件A A,即事件,即事件A A发生必然导致事件发生必然导致事件B B发生。发生。 相等:,称事件相等:,称事件A A与事件与事件B B相等。相等。 和:和: ,表示,表示A A、B B二事件中至少有一个发生;二事件中至少有一个发生;表示表示n n个事件个事件A A1 1 ,A A2 2 , , A An n中至少有一个发生。中至少有一个发生。差:差:A AB B,表示事件,表示事件A A发生,而事件发生,而事件B B不发生。不发生。 积:,也记作积:,也记作ABAB,表示,表示A A、B B二事件都发生;二事件都发生; 表示表示n n个事件个事件A

12、A1 1 ,A A2 2 , , A An n都发生。都发生。 互不相容互不相容( (或互斥或互斥) ):指:指ABAB ,即事件,即事件A A与事件与事件B B不能不能同时发生;若同时发生;若n n个事件个事件A A1 1 ,A A2 2 , , A An n的任意两个事件的任意两个事件不能同时发生,则称不能同时发生,则称A A1 1 ,A A2 2 , , A An n互不相容。互不相容。 互为对立互为对立( (互逆互逆) ):若:若S S,且,且ABAB,则,则A A与与B B二事件互逆。有二事件互逆。有 。ABBA 或或BAABBA ,即,即且且BA knkA1 BA knkA1 BA

13、 AASAA,图示事件间的关系(图示事件间的关系(Venn文图)文图)ABSABAABABABBABAABA AB事件的运算事件的运算 在进行运算时,经常要用到下述定律。设在进行运算时,经常要用到下述定律。设A A,B B,C C为事件,则有为事件,则有 交换律交换律 结合律结合律 分配律分配律 德德摩根律摩根律对于对于n n个事件,甚至对于可列个事件,德个事件,甚至对于可列个事件,德摩根律也摩根律也成立。成立。 。BABABABACABACBACABACBACBACBACBACBAABBAABBA ;,;,;,例例4 4:在例中有在例中有HHHHHH,HHTHHT,HTHHTH,HTTHTT

14、,TTTTTTHHHHHHTTTTTTTHHTHH,THTTHT,TTH TTH 21122121AAAAAAAA例例5 5:1)1) A A发生而发生而B B与与C C都不发生可以表示为:都不发生可以表示为:2)2) A A与与B B都发生而都发生而C C不发生可以表示为:不发生可以表示为:3)3) 所有这三个事件都发生可以表示为:所有这三个事件都发生可以表示为:4)4) 这三个事件恰好发生一个可以表示为:这三个事件恰好发生一个可以表示为:5)5) 这三个事件恰好发生两个可以表示为:这三个事件恰好发生两个可以表示为:6)6) 这三个事件至少发生一个可以表示为:这三个事件至少发生一个可以表示为

15、: CBACBACBA 或或或或ABCABCABCAB 或或或或ABCCBACBACBA BCACBACAB ABCBCACBACABCBACBACBACBA 或或练习一化简下列格式:练习一化简下列格式: BABABACBBABABA 321 ABBAABABABAACBBCACBABCBABBACBBAABABAABBAABABABA 321解解练习二证明下列等式:练习二证明下列等式: BAABABBAABABBAABABA 321 ABBABABABAABBAABABBAABBABBBAABAABABABAABBAABABAABABAAABASBABA 321解解练习三从下面两式分析各表示

16、什么包含关系。练习三从下面两式分析各表示什么包含关系。 ABAABA 21 。的的子子集集,是是,说说明明。的的子子集集,是是说说明明解解ABABABABABAABA 2,1返回返回在相同的条件下,进行了在相同的条件下,进行了n次试验,在这次试验,在这n次试次试验中,事件验中,事件A发生的次数发生的次数nA称为事件称为事件A发生的频数。发生的频数。比值比值nA n称为事件称为事件A发生的频率,并记成发生的频率,并记成n(A)。概率概率对于一个随机事件对于一个随机事件A (A (除必然事件和不可能事件除必然事件和不可能事件外外) )来说,它在一次试验中可能发生,也可能不发生。来说,它在一次试验中

17、可能发生,也可能不发生。我们希望知道的是事件在一次试验中发生的可能性。我们希望知道的是事件在一次试验中发生的可能性。用一个数用一个数P(A)P(A)来表示该事件发生的可能性大小,这来表示该事件发生的可能性大小,这个数个数P(A)P(A)就称为随机事件就称为随机事件A A的概率。的概率。我们希望找到一个数来表示我们希望找到一个数来表示P(A)P(A)。频率频率例考虑例考虑“抛硬币抛硬币”这个试验,我们将一枚硬币抛掷这个试验,我们将一枚硬币抛掷5 5次、次、5050次、次、500500次,各做次,各做1010遍。得到数据如下表所示遍。得到数据如下表所示( (其中其中n nH H表示表示H H发发生

18、的频数,生的频数,n(H)(H)表示表示H H发生的频率发生的频率) )。试验序试验序号号n= 5n= 50n=500nHn(H)nHn(H)nHn(H)1234567891023151242330.40.60.21.00.20.40.80.40.60.6222521252421182427310.440.500.420.500.480.420.360.480.540.622512492562532512462442582622470.5020.4980.5120.5060.5020.4920.4880.5160.5240.494频率稳定性频率稳定性大量实验证实,当重复试验的次数逐渐增大时,频

19、率呈大量实验证实,当重复试验的次数逐渐增大时,频率呈现出稳定性,逐渐稳定于某个常数。现出稳定性,逐渐稳定于某个常数。当当n足够大时,足够大时, n(A ) P(A)P(A)由于事件发生的频率表示由于事件发生的频率表示A A发生的频繁程度。频率大,发生的频繁程度。频率大,事件事件A A发生就频繁,这意味着发生就频繁,这意味着A A在一次试验中发生的可能性就在一次试验中发生的可能性就大。大。 当当n n增大时,频率在概率附近摆动。因此,每一个从独增大时,频率在概率附近摆动。因此,每一个从独立重复试验中测得的频率,都可以作为概率立重复试验中测得的频率,都可以作为概率P(A)P(A)的近似值。的近似值

20、。频率的基本性质频率的基本性质由定义,易见频率具有下述基本性质:由定义,易见频率具有下述基本性质: 0 0 n(A)1;(A)1; n(s)(s)1;1; 若若A A1 1 ,A A2 2 , , A Ak k是两两互不相容的事件,则是两两互不相容的事件,则n( A A1 1AA2 2AAk k )=n ( ( A A1 1)+)+n (A(A2 2)+)+ +n (A(Ak k).).返回返回有限样本空间有限样本空间我们先考虑只有有限个样本点的样本空间,这种样本空我们先考虑只有有限个样本点的样本空间,这种样本空间称为有限样本空间。这是最简单的样本空间,研究它有助间称为有限样本空间。这是最简单

21、的样本空间,研究它有助于深入研究更为复杂的样本空间。于深入研究更为复杂的样本空间。有限样本空间基本事件概率的定义有限样本空间基本事件概率的定义若若S S是有限样本空间,其样本点为是有限样本空间,其样本点为e e1 1,e e2 2,,e,en n,在这,在这种场合可以把的任何子集都当作事件。在这种样本空间中引种场合可以把的任何子集都当作事件。在这种样本空间中引进概率,只要对每个样本点给定一个数与它对应,此数称为进概率,只要对每个样本点给定一个数与它对应,此数称为事件事件e ei i的概率,并记之为的概率,并记之为P(eP(ei i),它是非负的,而且,它是非负的,而且满足满足 P(eP(e1

22、1)+P(e)+P(e2 2)+)+P(e+P(en n)=P(S)=1)=P(S)=1这样,我们对样本点定义了概率,用它来度量每个样本点出这样,我们对样本点定义了概率,用它来度量每个样本点出现的可能性的大小。由此出发,我们不难定义更为一般的事现的可能性的大小。由此出发,我们不难定义更为一般的事件的概率。件的概率。有限样本空间事件概率的定义有限样本空间事件概率的定义定义定义 任何事件任何事件A A的概率的概率P(A)P(A)是是A A中各样本点的概率之和中各样本点的概率之和 按照这个定义,显然有按照这个定义,显然有P(S)=1P(S)=1,0P(A)10P(A)1。离散样本空间离散样本空间把上

23、面做法推广到有可列个样本点的样本空间把上面做法推广到有可列个样本点的样本空间是不难的,这种空间称为离散样本空间,但是当把是不难的,这种空间称为离散样本空间,但是当把上面做法推广到不可列个样本点的场合,则会遇到上面做法推广到不可列个样本点的场合,则会遇到实质性的困难,对于这种一般场合的讨论,以后将实质性的困难,对于这种一般场合的讨论,以后将逐渐展开。逐渐展开。 等可能概率模型(古典概型)等可能概率模型(古典概型)等可能概率模型是有限样本空间的一种特例。这种随机等可能概率模型是有限样本空间的一种特例。这种随机现象具有下列两个特征:现象具有下列两个特征: (1)(1)在观察或试验中它的全部可能结果只

24、有有限个,譬在观察或试验中它的全部可能结果只有有限个,譬如为如为 n n个,记为个,记为e e1 1,e e2 2,,e,en n,而且这些事件是两两互不相,而且这些事件是两两互不相容的;容的; (2)(2)事件事件e ei i(i=1,2, i=1,2, n)n)的发生或出现是等可能的,的发生或出现是等可能的,即它们发生的概率都一样。即它们发生的概率都一样。 这类随机现象在概率论发展初期即被注意,许多最初的这类随机现象在概率论发展初期即被注意,许多最初的概率论结果也是对它作出的,一般把这类随机现象的数学模概率论结果也是对它作出的,一般把这类随机现象的数学模型称为古典概型。古典概型在概率论中占

25、有相当重要的地位,型称为古典概型。古典概型在概率论中占有相当重要的地位,它具有简单、直观的特点,且应用广泛。它具有简单、直观的特点,且应用广泛。如何理解古典概型中的等可能假设?如何理解古典概型中的等可能假设?等可能性是古典概型的两大假设之一,有了这两个假设,等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便。但在事实上,所讨论问给直接计算概率带来了很大的方便。但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的根据人们长期形成的“对称性经验对称性经验”作出的。例如,骰子是作出

26、的。例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等。因此,等可能假状相同,摸出其中任一个的可能性都相等。因此,等可能假设不是人为的,而是人们根据对事物的认识一对称性特征而设不是人为的,而是人们根据对事物的认识一对称性特征而确认的。确认的。等可能概率模型中事件概率的计算公式等可能概率模型中事件概率的计算公式设试验的样本空间为设试验的样本空间为S=eS=e1 1,e e2 2,,e,en n

27、 。由于在试验中。由于在试验中每个基本事件发生的可能性相同,即有每个基本事件发生的可能性相同,即有P(eP(e1 1)P(eP(e2 2)P(eP(en n)又由于基本事件是两两不相容的,于是又由于基本事件是两两不相容的,于是1=P(S)=P(e1=P(S)=P(e1 1 e e2 2 e en n) = P(e = P(e1 1)+P(e)+P(e2 2)+)+P(e+P(en n)=nP(e)=nP(ei i) P(e P(ei i)=1/n )=1/n ,i=1i=1,2 2,n n法国数学家拉普拉斯法国数学家拉普拉斯(Laplace)(Laplace)在在18121812年把上式作为概

28、年把上式作为概率的一般定义。事实上它只适用于古典概型场合。率的一般定义。事实上它只适用于古典概型场合。 样样本本点点总总数数包包含含的的样样本本点点数数个个不不同同的的数数。则则有有中中某某,是是这这里里个个基基本本事事件件,即即包包含含若若事事件件AnkePAPkiiieeeAkAkjikiiikk 121)(21,21有关排列组合的知识有关排列组合的知识求解古典概型问题的关键是弄清基本事件空间的样本点求解古典概型问题的关键是弄清基本事件空间的样本点总数和所求概率事件包含的样本点个数。在理清事件数的时总数和所求概率事件包含的样本点个数。在理清事件数的时候,必须分清研究的问题是组合问题还是排列

29、问题,以下是候,必须分清研究的问题是组合问题还是排列问题,以下是关于排列组合的知识:关于排列组合的知识: 1 1不同元素的选排列不同元素的选排列 从个不相同的元素中,无放回地取出个元素的排列从个不相同的元素中,无放回地取出个元素的排列( ( 0,m(B)0,则则在一般场合,我们将把这个等式作为条件概率的定义。在一般场合,我们将把这个等式作为条件概率的定义。.)()(32)(BPABPnmnmmmBAPBABBAB .)()()()()()()()()(BPABPSmBmSmABmBmABmBAP 条件概率的定义条件概率的定义 设设A,BA,B是两个事件,且是两个事件,且P(A)0P(A)0,称

30、,称为在事件为在事件A A发生的条件下事件发生的条件下事件B B发生的条件概率。发生的条件概率。)()()(APABPABP 条件概率满足概率定义中的三个基本性质条件概率满足概率定义中的三个基本性质非负性:对于任何事件非负性:对于任何事件B B,有,有P(BA)0P(BA)0; 规范性:对于必然事件规范性:对于必然事件S S,有,有P(SA)=1P(SA)=1; 可列可加性:设可列可加性:设B B1 1 ,B B2 2 , 两两互不相容的事件,两两互不相容的事件,即对于即对于ij, Bij, Bi iB Bj j= , i,j=1,2, = , i,j=1,2, , ,则有则有可见,条件概率也

31、是概率,前面对概率所证明的一些重可见,条件概率也是概率,前面对概率所证明的一些重要结果都适用于条件概率。例如:要结果都适用于条件概率。例如:特别当特别当B=SB=S时,条件概率化为无条件概率。时,条件概率化为无条件概率。. )(11 iiiiABPABP )()()()(1)(0)(212121BAAPBAPBAPBAAPBAPBAPBP 解解 易知此属古典概型问题将产品编号,易知此属古典概型问题将产品编号,1 1,2 2,3 3号为一等号为一等品;品;4 4号为二等品。以号为二等品。以(i(i,j)j)表示第一次、第二次分别取到表示第一次、第二次分别取到第第i i号、第号、第j j号产品。试

32、验号产品。试验E(E(取产品两次,记录其号码取产品两次,记录其号码) )的样的样本空间为本空间为 S=(1S=(1,2)2),(1(1,3)3),(1(1,4)4),(2(2,1)1),(2(2,3)3),(2(2,4)4),(4(4,1)1),(4(4,2)2),(4(4,3)3), A=(1A=(1,2)2),(1(1,3)3),(1(1,4)4),(2(2,1)1),(2(2,3)3),(2(2,4)4),(3(3,1)1),(3(3,2)2),(3(3,4)4), ABAB(1(1,2)2),(1(1,3)3),(2(2,1)1),(2(2,3)3),(3(3,1)1),(3(3,2)

33、2) 按条件概率的定义,得条件概率按条件概率的定义,得条件概率 例例15 15 一盒子装有一盒子装有4 4只产品,其中有只产品,其中有3 3只一等品,只一等品,1 1只二等品。只二等品。从中取产品两次,每次任取一只,作不放回抽样。设事件从中取产品两次,每次任取一只,作不放回抽样。设事件A A为第一次取到的是一等品为第一次取到的是一等品”,事件,事件B B为为“第二次取到的是一第二次取到的是一等品等品”。试求条件概率。试求条件概率P(BA)P(BA)。 也可以直接按条件概率的含义来求也可以直接按条件概率的含义来求P(BA)P(BA)。我们知道,当。我们知道,当A A发生以后,试验发生以后,试验E

34、 E所有可能结果的集合就是所有可能结果的集合就是A A,A A中有中有9 9个元个元素,其中只有素,其中只有(1(1,2)2),(1(1,3)3),(2(2,1)1),(2(2,3)3),(3(3,1)1),(3(3,2)2)属于属于B B,故可得,故可得.32129126)()()( APABPABP.3296)( ABP .)(1)()(0)(BBPAPBAPBPA ,则则互互斥斥,且且与与若若事事件件练练习习四四 .)(1)()(1)()()()()()()(BPAPBPABPAPBPABAPBPBAPBAP 解解乘法定理乘法定理设设P(A)0P(A)0,则有,则有 P(AB)=P(BA

35、)P(A)P(AB)=P(BA)P(A)上式被称为乘法公式。它可以由条件概率的公式直接推得。上式被称为乘法公式。它可以由条件概率的公式直接推得。 同理,若同理,若P(B)0P(B)0,则有,则有 P(AB)=P(AB)P(B)P(AB)=P(AB)P(B) 可以把乘法定理推广到任意可以把乘法定理推广到任意n n个事件之交的场合:设个事件之交的场合:设A A1 1,A,A2 2, ,A,An n为为n n个事件,个事件,n2,n2,且且 P(AP(A1 1A A2 2A An-1n-1)00,则有,则有 P(AP(A1 1A A2 2A An n)=P(A=P(An nAA1 1A A2 2A

36、An-1n-1)P(AP(An-1n-1AA1 1A A2 2A An-n-2 2)P(AP(A2 2AA1 1)P(AP(A1 1)例例16 16 设袋中装有设袋中装有r r只红球,只红球,t t只白球。每次自袋中任取一只球,只白球。每次自袋中任取一只球,观察其颜色然后放回,并再放入观察其颜色然后放回,并再放入a a只与所取出的那只球同色只与所取出的那只球同色的球。若在袋中连续取球四次,试求第一、二次取到红球的球。若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率。且第三、四次取到白球的概率。解解 以以A Ai i(i=l(i=l,2 2,3 3,4)4)表示事件表示事件

37、“第第i i次取到红球次取到红球”,则,则 分别表示事件第三、四次取到白球,所求概率为分别表示事件第三、四次取到白球,所求概率为43, AA.23)()()()()(11221332144321trtatratatrtatratAPAAPAAAPAAAAPAAAAP .200321110711091)()()()()()3 , 2 , 1(112213321321 APAAPAAAPAAAPBPAAABBiiAi,故故有有次次而而未未打打破破”。因因为为表表示示事事件件“透透镜镜落落下下三三次次落落下下打打破破”,以以表表示示事事件件“透透镜镜第第以以解解例例17 17 设某光学仪器厂制造的透

38、镜,第一次落下时打破的概率设某光学仪器厂制造的透镜,第一次落下时打破的概率为为1 12 2,若第一次落下未打破,第二次落下打破的概率为,若第一次落下未打破,第二次落下打破的概率为 7 71010,若前两次落下未打破,第三次落下打破的概率为,若前两次落下未打破,第三次落下打破的概率为 9 91010。试求透镜落下三次而未打破的概率。试求透镜落下三次而未打破的概率。,故故有有是是两两两两互互不不相相容容的的事事件件而而另另解解,按按题题意意321211321211,.AAAAAAAAAAAAB .20032001971)(,2001972002720721)(.200272111071109)()

39、()()(207211107)()()(109)(107)(21)().()()()(11221332111221213121321211 BPBPAPAAPAAAPAAAPAPAAPAAPAAAPAAPAPAAAPAAPAPBP故故得得,即即有有,已已知知 因为可以验证,条件概率满足概率定义中的三个条件,因为可以验证,条件概率满足概率定义中的三个条件,所以它是概率。所以它是概率。 条件概率是在试验条件概率是在试验E的条件上加上一个新条件的条件上加上一个新条件(如如B发发生生)求事件求事件(如如A)发生的概率。条件概率发生的概率。条件概率P(A B)与与P(A)的区的区别就是在别就是在E的条件

40、上增加了一个新条件。而无条件概率是的条件上增加了一个新条件。而无条件概率是没有增加新条件的概率。没有增加新条件的概率。条件概率条件概率P(A B)与积事件概率与积事件概率P(AB)有什么区别?有什么区别? P(AB) P(AB)是在样本空间是在样本空间S S内,事件内,事件ABAB的概率,而的概率,而P(AB)P(AB)是在试验是在试验E E增加了新条件增加了新条件B B发生后的缩减样本空间发生后的缩减样本空间S SB B中计算中计算事件事件A A的概率。虽然都是的概率。虽然都是A A、B B同时发生,但两者是不同的,同时发生,但两者是不同的,有有P(AB)P(AB)P(B)P(AB)P(B)

41、P(AB),仅当,仅当P(B)P(B)P(S)P(S)1 1时,两者相时,两者相等。等。条件概率为什么是概率?它与无条件条件概率为什么是概率?它与无条件概率有什么区别?概率有什么区别?全概率公式全概率公式 全概率公式是概率论的一个重要公式,应用全概率公式的全概率公式是概率论的一个重要公式,应用全概率公式的关键是建立样本空间的正确划分关键是建立样本空间的正确划分( (即构造一个正确的完备事件即构造一个正确的完备事件组组) ),然后计算各个概率和条件概率,最后代入全概率公式。,然后计算各个概率和条件概率,最后代入全概率公式。它是求复杂事件概率的有力工具。它是求复杂事件概率的有力工具。 样本空间的划

42、分的定义:设样本空间的划分的定义:设S S为试验为试验E E的样本空间,的样本空间,B B1 1,B,B2 2,,B,Bn n为为E E的一组事件。若的一组事件。若 B Bi iB Bj j= =,ij,i,j=1,2, ,ij,i,j=1,2, ,n;,n; B B1 1BB2 2BBn n=S,=S,则称则称B B1 1,B,B2 2, , B Bn n为样本空间为样本空间S S的一个划分。的一个划分。 全概率公式:设试验全概率公式:设试验E E的样本空间为的样本空间为S,AS,A为为E E的事件,的事件, B B1 1,B,B2 2,,B,Bn n为为S S的一个划分,且的一个划分,且P

43、(BP(Bi i)0(i=1,2, )0(i=1,2, ,n),n),则则 P(A)=P(ABP(A)=P(AB1 1)P(B)P(B1 1)+P(AB)+P(AB2 2)P(B)P(B2 2)+)+P(AB+P(ABn n)P(B)P(Bn n).).全概率公式的证明全概率公式的证明证明证明 因为事件因为事件B B1 1,B,B2 2,,B,Bn n时样本空间的一个划分,即时样本空间的一个划分,即B Bi i两两两两互不相容,互不相容,P(BP(Bi i)0(i=1,2, )0(i=1,2, ,n),n),而且,而且 B B1 1BB2 2BBn n=S=S有有 ABAB1 1ABAB2 2

44、ABABn n=A=A这里的这里的ABABi i也是两两互不相容(参见图)。也是两两互不相容(参见图)。 由概率的可列可加性由概率的可列可加性 P(A)=P(ABP(A)=P(AB1 1)+P(AB)+P(AB2 2)+)+P(AB+P(ABn n) )利用乘法定理即得利用乘法定理即得 P(A)=P(ABP(A)=P(AB1 1)P(B)P(B1 1)+P(AB)+P(AB2 2) P(B) P(B2 2)+)+P(AB+P(ABn n)P(B)P(Bn n) )B1AB5B4B3B2解解 设从这批种子中任选一颗是一等、二等、三等、四等种子设从这批种子中任选一颗是一等、二等、三等、四等种子的事

45、件分别记为的事件分别记为A A1 1,A,A2 2,A,A3 3,A,A4 4,则它们构成样本空间的一个,则它们构成样本空间的一个分割。用分割。用B B表示在这批种子中任选一颗,且这颗种子所结的表示在这批种子中任选一颗,且这颗种子所结的穗含有穗含有5050颗以上麦粒这一事件,则由全概率公式得颗以上麦粒这一事件,则由全概率公式得4825. 005. 011 . 05 . 115. 025 . 05 .95)()()(0000000041 iiiABPAPBP例例18 18 播种用的一等小麦种子中混合播种用的一等小麦种子中混合2 2的二等种子,的二等种子,1.51.5的的三等种子,三等种子,1 1

46、的四等种子。用一等、二等、三等、四等种的四等种子。用一等、二等、三等、四等种子长出的穗含子长出的穗含5050颗以上麦粒的概率分别是颗以上麦粒的概率分别是0.5,0.15,0.1,0.050.5,0.15,0.1,0.05,求这批种子所结的穗含有,求这批种子所结的穗含有5050颗以上麦颗以上麦粒的概率。粒的概率。练习五练习五 考卷中一道选择题有考卷中一道选择题有4 4个答案,仅有一个是正确的,个答案,仅有一个是正确的,设一个学生知道正确答案或不知道而乱猜是等可能的。如设一个学生知道正确答案或不知道而乱猜是等可能的。如果这个学生答对了,求它确实知道正确答案的概率。果这个学生答对了,求它确实知道正确

47、答案的概率。 A解解 样本空间可以划分为事件样本空间可以划分为事件A A一知道正确答案,一知道正确答案, 一不知一不知道。以道。以B B表示学生答对事件,则表示学生答对事件,则A A B B,P(AB)P(AB)P(A)P(A)1 12 2。P(BA)=1P(BA)=1,而,而P(B )P(B )1 14 4。由全概率公式。由全概率公式 P(B)P(B)P(A)P(BA)+P( )P(B )P(A)P(BA)+P( )P(B ) 1 12 21+11+12 21 14=54=58 8,故故 P(AB)P(AB)P(AB)P(AB)P(B)P(B)4 45 5AAA贝叶斯公式贝叶斯公式 设试验设

48、试验E E的样本空间为的样本空间为S S。A A为为E E的事件,的事件, B B1 1,B,B2 2,,B,Bn n为为S S的一个划分,且的一个划分,且P(A)0,P(BP(A)0,P(Bi i)0(I=1,2, )0(I=1,2, ,n),n),则,则上式称为贝叶斯上式称为贝叶斯(Bayes)(Bayes)公式。公式。 贝叶斯定理往往与全概率公式同时使用。全概率公式一贝叶斯定理往往与全概率公式同时使用。全概率公式一用于用于“由因求果由因求果”问题,而贝叶斯定理一般用于问题,而贝叶斯定理一般用于“执果寻因执果寻因”问题,在使用时要分清是什么问题,确定应用哪个公式。问题,在使用时要分清是什么

49、问题,确定应用哪个公式。., 2 , 1,)()()()()(1niBPBAPBPBAPABPnjjjiii 贝叶斯公式的证明贝叶斯公式的证明证证 由条件概率的定义及全概率公式即得由条件概率的定义及全概率公式即得., 2 , 1,)()()()()()()(1niBPBAPBPBAPAPABPABPnjjjiiii 当当n=2时,全概率公式和贝叶斯公式的形式时,全概率公式和贝叶斯公式的形式.)()()()()()()()()(),()()()()(,221BPBAPBPBAPBPBAPAPABPABPBPBAPBPBAPAPBBBBn 斯斯公公式式分分别别成成为为那那么么全全概概率率公公式式和

50、和贝贝叶叶就就是是此此时时记记为为时时,将将当当什么是先验概率和后验概率?什么是先验概率和后验概率? 贝叶斯公式在概率论和数理统计中有着多方面的应用。假贝叶斯公式在概率论和数理统计中有着多方面的应用。假定定B B1 1,B,B2 2, ,是导致试验结果的是导致试验结果的“原因原因”,P(BP(Bi i) )称为先验概率,称为先验概率,它反映了各种它反映了各种“原因原因”发生的可能性大小,一般是以往经验的发生的可能性大小,一般是以往经验的总结,在这次试验前已经知道。现在若试验产生了事件总结,在这次试验前已经知道。现在若试验产生了事件A A,这个,这个信息将有助于探讨事件发生的信息将有助于探讨事件

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(概率论的基本概念-PPT课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|