1、第第3章章 三相永磁同三相永磁同步电动机矢量控制步电动机矢量控制123.1 基于转子磁场定向矢量方程基于转子磁场定向矢量方程 3 3. .1 1. .1 1 转转转转子子子子结结结结构构构构及及及及物物物物理理理理模模模模型型型型 3 3. .1 1. .2 2 面面面面装装装装式式式式三三三三相相相相永永永永磁磁磁磁同同同同步步步步电电电电动动动动机机机机矢矢矢矢量量量量方方方方程程程程 3 3. .1 1. .3 3 插插插插入入入入式式式式三三三三相相相相永永永永磁磁磁磁同同同同步步步步电电电电动动动动机机机机矢矢矢矢量量量量方方方方程程程程 3.1.1 转子结构及物理模型转子结构及物理
2、模型 永磁同步电动机是由电励磁三相同步电动机发展而来。 它用永磁体代替了电永磁同步电动机是由电励磁三相同步电动机发展而来。 它用永磁体代替了电励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相三相同步电动同步电动机基本相同,故称为永磁同步电动机机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)。 用于矢量控制的用于矢量控制的 PMSM, 要求其, 要求其永磁励磁磁场波形永磁励磁磁场波形是正弦的, 这也是是正弦的, 这也是 PMSM的一个基本特征。的一个基本特征。
3、 3PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三种,如图种,如图 3-1、图、图 3-2 和图和图 3-3 所示。所示。 图图 3-1 面装式转子结构面装式转子结构 图图 3-2 插入式转子结构插入式转子结构 图图 3-3 内装式转子结构内装式转子结构 对于每种类型转子结构,永磁体的形状和转子的结构形式,根据永磁材料的对于每种类型转子结构,永磁体的形状和转子的结构形式,根据永磁材料的类别和设计要求的不同,可以有多种的选择,可采取各式各样的设计方案。类别和设计要求的不同,可以有多种的选择,可采取各式各样的设计方
4、案。 但有一基本原则,即除了考虑成本、制造和可靠运行外,应尽量产生正弦分但有一基本原则,即除了考虑成本、制造和可靠运行外,应尽量产生正弦分布的励磁磁场。布的励磁磁场。 456图图3-6 二极面装式二极面装式PMSM物理模型物理模型a) 转子等效励磁绕组转子等效励磁绕组 b) 物理模型物理模型7如图如图 3-6a 所示,由于永磁体内部的磁导所示,由于永磁体内部的磁导率率接近于空气,因此对于定接近于空气,因此对于定子三相绕组产生的电枢子三相绕组产生的电枢磁动势磁动势而言,电动机气隙是均匀的,气隙长度为而言,电动机气隙是均匀的,气隙长度为g。于是于是,图,图 3-6b 相当于相当于将面装式将面装式
5、PMSM 等效为等效为了了一台一台电励磁电励磁三相三相隐极隐极同步电动机,同步电动机, 惟惟一的差别是一的差别是电励磁电励磁同步电动机的同步电动机的转子转子励磁磁场可以调节,励磁磁场可以调节,而面装式而面装式 PMSM 的的永磁永磁励磁磁场不可调节。在电动机运行中,若不计及励磁磁场不可调节。在电动机运行中,若不计及温度变化对永磁体供磁能力的影响, 可认为温度变化对永磁体供磁能力的影响, 可认为f是恒定的, 即是恒定的, 即fi是个常值。是个常值。 图图 3-6b 中,将永磁励磁磁场轴线定义为中,将永磁励磁磁场轴线定义为 d 轴,轴,q 轴顺着旋转方向超轴顺着旋转方向超前前 d 轴轴 90电角度
6、。电角度。sf和和si分别是定子三相绕组产生的磁动势矢量和定分别是定子三相绕组产生的磁动势矢量和定子电流矢量,产生子电流矢量,产生)(ssfi的的等效单轴线圈位于等效单轴线圈位于)(ssfi轴上轴上,其有效匝数为,其有效匝数为相绕组的相绕组的23倍倍。于是,图。于是,图 3-6b 便便与与图图 1-17 具有了相同的形式,即面具有了相同的形式,即面装式装式 PMSM 和三相隐极同步电动机的物理模型和三相隐极同步电动机的物理模型是是相同相同的的。 8同理,可将插入式转子的两个永磁体等效为两个空心同理,可将插入式转子的两个永磁体等效为两个空心励磁励磁线圈,再线圈,再将将它们它们等效为置于等效为置于
7、转子槽内的励磁绕组,转子槽内的励磁绕组,其其有效匝数为相绕组有效匝数有效匝数为相绕组有效匝数的的2/3倍,等效励磁电流为倍,等效励磁电流为fi,如图,如图 3-7a 所示所示。与面装式。与面装式 PMSM 不同不同的是,电动机气隙不再是均匀的,的是,电动机气隙不再是均匀的,此时此时面对永磁体部分的气隙长度增大面对永磁体部分的气隙长度增大为为 g+h,h 为永磁体的高度,而面对转子铁心部分的气隙长度仍为为永磁体的高度,而面对转子铁心部分的气隙长度仍为 g,因,因此此转子转子d轴方向上的气隙磁阻要大于轴方向上的气隙磁阻要大于q轴方向上的气隙磁阻轴方向上的气隙磁阻, 可将, 可将图图3-7a等效为等
8、效为图图 3-7b 的形式的形式。 9图中图中当当o0时,时,将将)(ssfi在气隙中在气隙中产生的正弦分布磁场称为直轴电枢产生的正弦分布磁场称为直轴电枢反应反应磁场;磁场; 当当o90时,时, 将将)(ssfi在气隙中产生的在气隙中产生的正弦分布磁场称为交轴电枢正弦分布磁场称为交轴电枢反应反应磁场。磁场。 显然,在幅值相同的显然,在幅值相同的)(ssfi作用下,直轴电枢作用下,直轴电枢反应反应磁场要弱于交轴电枢磁场要弱于交轴电枢反应反应磁场,磁场,于是于是有有mqmdLL,mdL和和mqL分别为直轴等效励磁电感和交轴等效励磁电分别为直轴等效励磁电感和交轴等效励磁电感。感。 对比图对比图 3-
9、7b 和图和图 1-19 可以看出,可以看出, 插入式插入式 PMSM 与与电励磁电励磁三相凸极同步电动三相凸极同步电动机机相比较,相比较,两两个个物理模型物理模型主要的差别表现在后者的主要的差别表现在后者的mqmdLL,两者恰好相反。,两者恰好相反。 对于内装式对于内装式 PMSM,因直轴磁路的磁导要小于交轴磁路的磁导,故有因直轴磁路的磁导要小于交轴磁路的磁导,故有mqmdLL,其物理模型,其物理模型便便和插入式和插入式 PMSM 的的基本基本相同。相同。 对于如图对于如图 3-6b 所示的面装式所示的面装式 PMSM,则有,则有mmqmdLLL,mL称为等效励磁称为等效励磁电感。且有,电感
10、。且有,mfmLL。 10a) 转子等效励磁绕组转子等效励磁绕组 b) 物理模型物理模型图图3-7 二极插入式二极插入式PMSM的等效物理模型的等效物理模型113.1.2 面装式三相永磁同步电动机矢量方程面装式三相永磁同步电动机矢量方程 1 1定子磁链和电压矢量方程定子磁链和电压矢量方程 图图 3-6b 中,三相绕组的电压方程可表示为中,三相绕组的电压方程可表示为 tiRuddAAsA (3-1) tiRuddBBsB (3-2) tiRuddCCsC (3-3) 式中,式中,A、B和和C各为各为 ABC 绕组的全磁链。可有绕组的全磁链。可有 fCfBfACBACCBCABCBBAACABAC
11、BAiiiLLLLLLLLL (3-4) 式中,式中,fA、fB和和fC分别为永磁励磁磁场链过分别为永磁励磁磁场链过 ABC 绕组产生的磁链。绕组产生的磁链。 12同电励磁三相隐极同电励磁三相隐极同步电动机一样,因电动机气隙均匀,故同步电动机一样,因电动机气隙均匀,故 ABC 绕组绕组的自感和互感都与转子位置无关,均为常值。于是有的自感和互感都与转子位置无关,均为常值。于是有 m1sCBALLLLL (3-5) 式中,式中,sL和和m1L分别为相绕组的漏电感和励磁电感。另有分别为相绕组的漏电感和励磁电感。另有 m1om1CBBCCAACBAAB21cos120LLLLLLLL (3-6) 式式
12、(3-4)可表示为可表示为 fCfBfACBAm1sm1m1m1m1sm1m1m1m1sCBA2121212121iiiLLLLLLLLLLLL (3-7) 式中式中,fACBm1Am1sA)(21)(iiLiLL。 13若定子三相绕组为若定子三相绕组为 Y 接,且无中线引出,则有接,且无中线引出,则有0CBAiii,于是,于是 fAAsfAAmsfAAm1sA )( )23(iLiLLiLL (3-8) 式中,式中,m1m23LL,为等效励磁电感;,为等效励磁电感;mssLLL,称为同步电感。,称为同步电感。 同样,可将同样,可将B和和C表示为式表示为式(3-8)的形式。由此可将式的形式。由
13、此可将式(3-7)表示为表示为 fCfBfACBAmsCBA)(iiiLL (3-9) 同三相感应电动机一样,由三相绕组中的电流同三相感应电动机一样,由三相绕组中的电流Ai、Bi和和Ci构成了定子电流矢构成了定子电流矢量量si(如图(如图 3-6b 所示)所示) 。 14同理由三相绕组的全磁链可构成定子磁链矢量同理由三相绕组的全磁链可构成定子磁链矢量s,由,由fA、fB和和fC可构成转子磁链矢量可构成转子磁链矢量f,即有,即有 )(32)(32)(32fC2fBfAfC2BAsC2BAsaaaaiaaiii (3-10) 将式将式(3-9)两端矩阵的第两端矩阵的第 1 行分别乘以行分别乘以3/
14、2,第,第 2 行分别乘以行分别乘以 a3/2,第第 3 行分别乘以行分别乘以 a23/2,再将三行相加,可得,再将三行相加,可得 15fsmsssiiLL (3-11) 通常将定子电流矢量产生的漏磁场和电枢反应磁场之和称为电通常将定子电流矢量产生的漏磁场和电枢反应磁场之和称为电枢磁场,将转子励磁磁场称为转子磁场,又称为主磁极磁场。枢磁场,将转子励磁磁场称为转子磁场,又称为主磁极磁场。 可将式可将式(3-11)表示为表示为 fsssi L (3-12) 此式为此式为定子磁链矢量方程定子磁链矢量方程,ssiL为电枢磁链矢量, 与电枢磁场相对应。为电枢磁链矢量, 与电枢磁场相对应。 is产生的漏产
15、生的漏磁链矢量,磁链矢量,与定子相与定子相绕组漏磁绕组漏磁场相对应场相对应is产生的励磁磁产生的励磁磁链矢量,与电枢链矢量,与电枢反应磁场相对应反应磁场相对应转子等效励磁绕组转子等效励磁绕组产生的励磁磁链矢产生的励磁磁链矢量,与永磁体产生量,与永磁体产生的励磁磁场相对应的励磁磁场相对应16同理,可将式同理,可将式(3-1)式式(3-3)转换为矢量方程,即有转换为矢量方程,即有 tRddssssiu (3-13) 将式将式(3-12)代入式代入式(3-13),可得,可得 ttLRssddddfsssiiu (3-14) 式中,式中,rjffe,r为为f在在 ABC 轴系内的空间相位,如图轴系内的
16、空间相位,如图 3-6b 所示。另有所示。另有 frjfjfjedd)e(ddrrtt (3-15) 式中,等式右端第式中,等式右端第 1 项为变压器电动势项,因项为变压器电动势项,因f为恒值,故为零;第为恒值,故为零;第 2 项为运项为运动电动势项,是因转子磁场旋转产生的感应电动势,通常又称为动电动势项,是因转子磁场旋转产生的感应电动势,通常又称为反电动势反电动势。 最后,可将式最后,可将式(3-13)表示为表示为 frssssjddiiutLRs (3-16) 此式为此式为定子电压矢量方程定子电压矢量方程。 17可将其表示为等效电路形式,如图可将其表示为等效电路形式,如图 3-8 所示。所
17、示。图中,图中,fr0je,为感应为感应电动势矢量。在正弦稳态下,因电动势矢量。在正弦稳态下,因si幅幅值恒定,则有值恒定,则有sssssjddiiLtL,于是,于是式式(3-16)可表示为可表示为 fsssssjjiiuLRss (3-17) 由式由式(3-12)和式和式(3-17)可得如图可得如图 3-9a所所示的矢量图。示的矢量图。 在在 1.4.2 节, 在分析三相感应电动节, 在分析三相感应电动机相矢图时已知,在正弦稳态下, (空机相矢图时已知,在正弦稳态下, (空间)矢量和(时间)相量具有时空对应关系,若同取间)矢量和(时间)相量具有时空对应关系,若同取 A 轴为时间参考轴,可轴为
18、时间参考轴,可将矢量图直接转换为将矢量图直接转换为 A 相绕组的相量图,或者反之。这一结论同样适用于相绕组的相量图,或者反之。这一结论同样适用于PMSM,因此可将图,因此可将图 3-9a 所示的矢量图直接转换为所示的矢量图直接转换为 A 相绕组的相量图,如图相绕组的相量图,如图3-9b 所示。所示。 图图 3-8 面装式面装式 PMSM 等效电路等效电路 18a) 稳态矢量图稳态矢量图 b) 相量图相量图图图3-9 面装式面装式PMSM矢量图和相量图矢量图和相量图19此时,可将式此时,可将式(3-17)直接转换为直接转换为 0ssssfmsssssfsssssj jj jjEILIRILILI
19、RILIRUssss (3-18) 式中,式中,fmfsfs0ILE;因;因mmfLL,故有,故有fms0ILE 。 由式由式(3-18)可得如图可得如图 3-10 所示的等效电路。图中,将永磁体处理为一个所示的等效电路。图中,将永磁体处理为一个正弦电流源。正弦电流源。 图图 3-10 以电压源表示的等效电路以电压源表示的等效电路 202 2电磁转矩矢量方程电磁转矩矢量方程 根据图根据图 1-17 所示的电励磁三相隐极同步电动机物理模型,电磁转矩为所示的电励磁三相隐极同步电动机物理模型,电磁转矩为 sfsfe sini pipt (3-19) 对比图对比图 1-6b 和图和图 1-17 可知,
20、式可知,式(3-19)同样适用于面装式同样适用于面装式 PMSM,只是此时转,只是此时转子磁场不是由转子励磁绕组产生的,而是由永磁体提供的。子磁场不是由转子励磁绕组产生的,而是由永磁体提供的。 式式(3-19)中,当中,当f和和si幅值恒定时,幅值恒定时,电磁转矩就仅与电磁转矩就仅与角有关, 将此时的角有关, 将此时的et-关系曲线称为关系曲线称为矩矩-角特性角特性,如图,如图 3-11 所示,所示,为转矩角。图为转矩角。图 3-11 所示特性曲线与图所示特性曲线与图1-40 所示的三相隐极同步电动机矩所示的三相隐极同步电动机矩-角特角特性完全相同。性完全相同。 将式将式(3-19)表示为表示
21、为 )(1smfmeiLLpt (3-20) 图图 3-11 te- 关系曲线关系曲线 21式式(3-20)表明,表明,电磁转矩可看成是由电枢反应磁场与永磁励磁磁场相电磁转矩可看成是由电枢反应磁场与永磁励磁磁场相互作用的结果互作用的结果, 且决定于两个磁场的幅值和相对位置, 由于, 且决定于两个磁场的幅值和相对位置, 由于r幅值恒定,幅值恒定,因此将决定于电枢反应磁场因此将决定于电枢反应磁场smiL的幅值和相对的幅值和相对f的相位的相位。在电动机学。在电动机学中, 将中, 将)(ssif对主极磁场的影响和作用称为对主极磁场的影响和作用称为电枢反应电枢反应, 正是由于电枢反应, 正是由于电枢反应
22、使气隙磁场发生畸变,促使了机电能量转换,才使气隙磁场发生畸变,促使了机电能量转换,才产生了电磁转矩。由式产生了电磁转矩。由式(3-20)也可看出,电枢反应的结果将决定于电枢反应磁场的强弱和其与主也可看出,电枢反应的结果将决定于电枢反应磁场的强弱和其与主极磁场的相对位置。极磁场的相对位置。 应该指出,应该指出,)(ssif除产生电枢反应磁场外,还产生了电枢漏磁场,除产生电枢反应磁场外,还产生了电枢漏磁场,但但此漏磁场不参与机电能量转换,不会影响式此漏磁场不参与机电能量转换,不会影响式(3-20)所示的电磁转矩生成。所示的电磁转矩生成。 根据图根据图 3-9b 和图和图 3-10,可得,可得正弦稳
23、态下电动机的电磁正弦稳态下电动机的电磁功率为功率为 cos3)90(cos3s0os0eIEIEP (3-21) 式中,式中,为内功率因数角。为内功率因数角。或者或者 IILPsin3sfmse (3-22) -22电磁转矩为电磁转矩为 cos3s0seIEpT (3-23) 或者或者 IIpLTsin3sfme (3-24) 由式由式(3-24),可得,可得 sfsfsfme sinsin)3)(3(i pipIILpT (3-25) 式式(3-25)与式与式(3-19)一致。这说明在转矩的矢量控制中,控制的是定子电流一致。这说明在转矩的矢量控制中,控制的是定子电流矢量矢量si的幅值和相对的
24、幅值和相对f的空间相位角的空间相位角,而在正弦稳态下,就相当于控制,而在正弦稳态下,就相当于控制定子电流相量定子电流相量sI的幅值和相对的幅值和相对f的相位角的相位角, 或者相当于控制, 或者相当于控制sI的幅值和的幅值和相对相对0E的相位角的相位角。 -233.1.3 插入式三相永磁同步电动机矢量方程插入式三相永磁同步电动机矢量方程 如图如图 3-7b 所示,对于插入式转子结构,电动机气隙是不均匀的。在所示,对于插入式转子结构,电动机气隙是不均匀的。在幅值相同的幅值相同的)(ssfi作用下,因相位角不同,产生的电枢反应磁场不会相作用下,因相位角不同,产生的电枢反应磁场不会相同,等效励磁电感不
25、再是常值,而随同,等效励磁电感不再是常值,而随角的变化而变化,这给定量计算角的变化而变化,这给定量计算电枢反应磁场和分析电枢反应作用带来很大困难。在电机学中,常采用电枢反应磁场和分析电枢反应作用带来很大困难。在电机学中,常采用双反应(双轴)理论来分析凸极同步电动机问题。对于插入式永磁同步双反应(双轴)理论来分析凸极同步电动机问题。对于插入式永磁同步电动机,同样可采用这种分析方法,为此可采用图电动机,同样可采用这种分析方法,为此可采用图 3-7b 中的中的 dq 轴系来轴系来构建数学模型。构建数学模型。 241 1定子磁链和电压方程定子磁链和电压方程 将图将图 3-7b 表示为图表示为图 3-1
26、2 的形的形式。图中,将单轴线圈式。图中,将单轴线圈 s 分解为分解为 dq轴系上的双轴线圈轴系上的双轴线圈 d 和和 q, 每个轴线, 每个轴线圈的有效匝数仍与单轴线圈相同。圈的有效匝数仍与单轴线圈相同。这相当于将定子电流矢量这相当于将定子电流矢量si分解为分解为 qdsjii i (3-26) 根据双反应理论, 可分别求得根据双反应理论, 可分别求得)(ddfi和和)(qqfi产生的电枢反应磁场, 即有产生的电枢反应磁场, 即有 dmdmdiL (3-27) qmqmqiL (3-28) 式中,式中,mdL和和mqL分别为直轴和交轴分别为直轴和交轴等效励磁电感,等效励磁电感,mqmdLL。
27、 图图 3-12 同步旋转同步旋转 dq 轴系轴系 25于是,在于是,在 dq 轴方向上的磁场则分别为轴方向上的磁场则分别为 fdddiL (3-29) qqqiL (3-30) 式中,式中,mdsdLLL, 称为直轴同步电感;, 称为直轴同步电感;mqsqLLL, 称为交轴同步电感。, 称为交轴同步电感。 由式由式(3-29)和式和式(3-30),可得以,可得以 dq 轴系表示的定子磁链矢量轴系表示的定子磁链矢量s为为 qqfddqddqsjjiLiL (3-31) 定子电压矢量方程定子电压矢量方程(3-13)是由三相绕组电压方程是由三相绕组电压方程(3-1)(3-3)得出的,具有得出的,具
28、有普遍意义,对面装式、插入式和内装式普遍意义,对面装式、插入式和内装式 PMSM 均适用。同三相感应电动机一均适用。同三相感应电动机一样,通过矢量变换可将样,通过矢量变换可将 ABC 轴系内定子电压矢量方程轴系内定子电压矢量方程(3-13)变换为以变换为以 dq 轴系轴系表示的矢量方程。表示的矢量方程。利用变换因子利用变换因子rje,可得,可得 rjdqsseuu (3-32) rjdqsseii (3-33) rjdqsse (3-34) 26将式将式(3-32)式式(3-34)代入式代入式(3-13), 可得以, 可得以 dq 轴系表示的电压矢量方程为轴系表示的电压矢量方程为 dqsrdq
29、sdqssdqsjddiutR (3-35) 与式与式(3-13)相比, 式相比, 式(3-35)中多了右端第三项, 这是由于中多了右端第三项, 这是由于 dq 轴系旋转而产生的。轴系旋转而产生的。 将式将式(3-35)中的各矢量以坐标分量表示,可得电压分量方程为中的各矢量以坐标分量表示,可得电压分量方程为 qrddsdddtiRu (3-36) drqqsqddtiRu (3-37) 可将式可将式(3-36)和式和式(3-37)表示为表示为 qqrdddsdddiLtiLiRu (3-38) )(ddfddrqqqsqiLtiLiRu (3-39) 27图图 3-12 中,由于中,由于mdm
30、fLL,可将,可将f表示为表示为fmdfmffiLiL,于是,于是可将磁链方程可将磁链方程(3-29)和和(3-30)写为写为 fmddmddsdiLiLiL (3-40) qmqqsqiLiL (3-41) 将式将式(3-40)和式和式(3-41)代入式代入式(3-36)和式和式(3-37),可得,可得 qqrdmdsdsddd)(iLtiLLiRu (3-42) fmdrddrqmqsqsqdd)(iLiLtiLLiRu (3-43) 在已知电感在已知电感sL、mdL、mqL和和fi情况下,由电压方程情况下,由电压方程(3-42)和式和式(3-43)可可得如图得如图 3-13 所示的等效电
31、路。所示的等效电路。 28 图图 3-13 以以 dq 轴系表示的电压等效电路轴系表示的电压等效电路 a) 直轴直轴 b) 交轴交轴 若以若以感应感应电动势电动势0e来来表示表示fr,则,则可将电压分量方程表示为可将电压分量方程表示为 qqrdddsdddiLtiLiRu (3-44) 0ddrqqqsqddeiLtiLiRu (3-45) 对于上述插入式对于上述插入式 PMSM 的电压分量方程,若令的电压分量方程,若令sqdLLL,便可转化为面,便可转化为面装式装式 PMSM 的电压分量方程。的电压分量方程。 29在在正弦正弦稳稳态态下,下,式式(3-44)和式和式(3-45)则变为则变为
32、qqrdsdiLiRu (3-46) 0ddrqsqeiLiRu (3-47) 此时,此时,sr ,s为电源电角频率。为电源电角频率。 将式将式(3-46)和式和式(3-47)改写为改写为 qqsdsdjjiLiRu (3-48) 0ddsqsqjjjjeiLiRu (3-49) 由式由式(3-46)和式和式(3-47), 可得到插入式和内装式, 可得到插入式和内装式 PMSM 的矢量图, 如图的矢量图, 如图 3-14所示。与图所示。与图 3-9a 比较,可以看出,由于交、直轴磁路不对称(磁导不同) ,比较,可以看出,由于交、直轴磁路不对称(磁导不同) ,已将定子电流(磁动势)矢量已将定子电
33、流(磁动势)矢量)(ssfi分解为交轴分量分解为交轴分量)(jqqfi和直轴分量和直轴分量)(ddfi,这实际上体现了双反应理论的分析方法。,这实际上体现了双反应理论的分析方法。 30图图3-14 插入式和内装式插入式和内装式PMSM稳态矢量图稳态矢量图31同样,可将图同样,可将图 3-14 所示的矢量图直接转换为所示的矢量图直接转换为 A 相绕组的相量图,如图相绕组的相量图,如图3-15a 所示。对于面装式所示。对于面装式 PMSM,可将图,可将图 3-15a 表示为图表示为图 3-15b 的形式,此的形式,此图与图图与图 3-9b 形式相同。形式相同。 图图 3-15 PMSM 相量图相量
34、图 a) 插入式插入式和和内装式内装式 PMSM b) 面装式面装式 PMSM 32实际上,在正弦稳态下,式实际上,在正弦稳态下,式(3-48)和式和式(3-49)中各物理量均为中各物理量均为恒定的恒定的直流量,且直流量,且为正弦量有效值的为正弦量有效值的3倍倍。将式将式(3-48)和式和式(3-49)各量除以各量除以3就变为就变为了了正弦量有效正弦量有效值值,再将两再将两式式两两边同乘以边同乘以tsje,就就相当于将相当于将两式两式中的中的(空间)矢量转换为(空间)矢量转换为(时间时间)相量,相量,可可将将图图 3-12 所示的所示的空间复平面转换为时间复平面,空间复平面转换为时间复平面,且
35、同取且同取 A 轴为时间参考轴为时间参考轴,轴,t = 0 时,时,d 轴与轴与 A 轴重合,参考相量为轴重合,参考相量为)(ffI 。于是可得于是可得到到以以(时间时间)相量相量表示的电压方程为表示的电压方程为 0qqsddssssjjEILILIRU (3-51) 对于面装式对于面装式 PMSM,可将式,可将式(3-51)改写为式改写为式(3-18)的形式。的形式。 图图 3-9b 和图和图 3-15 中,中,E0是永磁励磁磁场产生的运动电动势,即有是永磁励磁磁场产生的运动电动势,即有 3frfr0E (3-52) 由式由式(3-52),可得,可得 0mdrf3ELi (3-53) 通过空
36、载试验可确定通过空载试验可确定 E0和和 r,如果已知,如果已知mdL,便可求得等效励磁电流,便可求得等效励磁电流fi。 332 2电磁转矩方程电磁转矩方程 对于插入式和内装式对于插入式和内装式 PMSM 而言,图而言,图 3-7b 与三相凸极同步电动机与三相凸极同步电动机的等效模型图的等效模型图 1-19 具有相同的形式。具有相同的形式。 图图 3-16 te- 特性特性曲线曲线 可以看出:可以看出: 当当角小于角小于2时, 磁阻时, 磁阻转矩为负值, 具有制动性质;转矩为负值, 具有制动性质; 当当角大于角大于2时, 磁阻时, 磁阻转矩为正值, 具有驱动性质。转矩为正值, 具有驱动性质。
37、这与电励磁凸极同步电这与电励磁凸极同步电动机相反,因为电励磁凸极动机相反,因为电励磁凸极同步电动机的凸极效应是由同步电动机的凸极效应是由于于qdLL 引起的。引起的。 励磁励磁转矩转矩磁磁阻阻转转矩矩合成合成转矩转矩34根据图根据图 1-19 已得三相凸极同步电动机的电磁转矩为已得三相凸极同步电动机的电磁转矩为 iLLiptsin2)(21sin2sqdsfe (3-54) 显然, 式显然, 式(3-54)同样适用于插入式和内装式同样适用于插入式和内装式 PMSM, 只是此时转, 只是此时转子磁场不是由转子励磁线圈产生的,而是由永磁体提供的。子磁场不是由转子励磁线圈产生的,而是由永磁体提供的。
38、 电枢和永磁体励电枢和永磁体励磁磁场相互作用磁磁场相互作用产生的产生的励磁转矩励磁转矩因直轴磁阻和交轴因直轴磁阻和交轴磁阻不同所引起的磁阻不同所引起的磁阻转矩磁阻转矩35在由插入式在由插入式或或内装式内装式 PMSM 构构成的伺服驱动中, 可以灵活有效地成的伺服驱动中, 可以灵活有效地利用磁阻转矩。利用磁阻转矩。 例如,在恒转矩运行区,例如,在恒转矩运行区, 通过通过控制控制角,使其发生在角,使其发生在 2范范围内,可提高转矩值;在恒功率运行区,通过调整和控制围内,可提高转矩值;在恒功率运行区,通过调整和控制角可以提角可以提高输出转矩和扩大速度范围。高输出转矩和扩大速度范围。 在在图图 3-1
39、3 所示的所示的 dq 轴系中轴系中,有有 iicossd (3-55) iisinsq (3-56) 将式将式(3-55)和式和式(3-56)代入式代入式(3-54),可得可得 )(qdqdqfeiiLLipt (3-57) 此式为此式为电磁转矩方程电磁转矩方程。 36可将式可将式(3-57)表示为表示为 )j()j(qdqdeiipt (3-58) 于是有于是有 ssei pt (3-59) 此式为此式为电磁转矩矢量方程电磁转矩矢量方程。应该指出,式。应该指出,式(3-59)既适用于面装式既适用于面装式PMSM,也适用于插入式,也适用于插入式和内装式和内装式 PMSM,具有普遍性。因为,具
40、有普遍性。因为s和和si在电动机内客观存在,当参考轴系改变时,并不能改变两者间的作用在电动机内客观存在,当参考轴系改变时,并不能改变两者间的作用关系和转矩值,所以式关系和转矩值,所以式(3-59)对对 ABC 轴系和轴系和 dq 轴系均适用。轴系均适用。 对于面装式对于面装式 PMSM,可将式可将式(3-59)表示为表示为 sfsssfe)(iiipLpt (3-60) 式式(3-60)和式和式(3-19)是同一表达式。是同一表达式。 3738如图如图 3-12 所示,这等同于在所示,这等同于在 dq 轴系内控制轴系内控制si的两个电流分量的两个电流分量qi和和di。但是,。但是,这个这个 d
41、q 轴系的轴系的 d 轴一定要与轴一定要与f方方向一致, 或者说向一致, 或者说 dq 轴系是沿转子磁轴系是沿转子磁场定向的,通常称之为场定向的,通常称之为磁场定向磁场定向。 由转矩矢量方程由转矩矢量方程(3-19),可得,可得 qfsfe sinipipt (3-61) 式式(3-61)表明,决定电磁转矩的是定表明,决定电磁转矩的是定子电流子电流 q 轴分量,轴分量,qi称为称为转矩电流转矩电流。 若控制若控制o90电角度电角度(0di),则则si与与f在空间正交,在空间正交,qsjii,定,定子电流全部为转矩电流,此时可将子电流全部为转矩电流,此时可将面装式面装式 PMSM 表示为图表示为
42、图 3-17 的形的形式。图中,虽然转子以电角度式。图中,虽然转子以电角度r旋转,但是在旋转,但是在 dq 轴系内轴系内si与与f却始终相对静止却始终相对静止。 图图 3-17 面装式面装式 PMSM 转矩控制转矩控制(0di) 39从转矩生成的角度,可将面装式从转矩生成的角度,可将面装式 PMSM 等效为他励直流电动机,如图等效为他励直流电动机,如图3-18a 所示。所示。 图图 3-18 等效他励直流电动机等效他励直流电动机 a) iq0, id=0 b) iq=0, id0 40图图 3-18a 中,中,PMSM 的转子转换为了直流电动机的定子,定子励的转子转换为了直流电动机的定子,定子
43、励磁电流磁电流fi为常值,产生的励磁磁场即为为常值,产生的励磁磁场即为f; PMSM 的的 q 轴线圈等效为了电枢绕组,此时直流电动机电刷置于轴线圈等效为了电枢绕组,此时直流电动机电刷置于几何中性线上, 电枢产生的交轴磁动势即为几何中性线上, 电枢产生的交轴磁动势即为qf, 它产生的交轴正弦磁, 它产生的交轴正弦磁场与图场与图 3-17 中的相同。中的相同。 对比图对比图 3-17 和图和图 3-18a 可以看出,交轴电流可以看出,交轴电流qi已相当于他励直流已相当于他励直流电动机的电枢电流,电动机的电枢电流,控制控制qi即相当于控制电枢电流,可以获得与他励即相当于控制电枢电流,可以获得与他励
44、直流电动机同样的转矩控制效果。直流电动机同样的转矩控制效果。 412 2弱磁弱磁 与他励直流电动机不同的是,与他励直流电动机不同的是,PMSM 的转子励磁不可调节。为了的转子励磁不可调节。为了能够实现弱磁,可以利用磁动势矢能够实现弱磁,可以利用磁动势矢量量sf, 使其对永磁体产生去磁作用。, 使其对永磁体产生去磁作用。在图在图 3-6b 中, 若控制中, 若控制o90,sf便便会产生直轴去磁分量会产生直轴去磁分量df。对去磁磁。对去磁磁动势动势df而言, 面装式而言, 面装式 PMSM 就如图就如图3-19 所示。图中,所示。图中,di的实际方向与的实际方向与正方向相反,即正方向相反,即0di
45、。 同理,可将图同理,可将图 3-19 等效为他励直流电动机,如图等效为他励直流电动机,如图 3-18b 所示。图中,已所示。图中,已将直轴线圈转换为了电刷位于将直轴线圈转换为了电刷位于 d 轴上的电枢绕组。电枢绕组产生的去磁磁动轴上的电枢绕组。电枢绕组产生的去磁磁动势势df对定子励磁磁场的去磁作用和效果与图对定子励磁磁场的去磁作用和效果与图 3-19 中的相同。中的相同。 图图 3-19 面装式面装式 PMSM 弱磁控制弱磁控制(idis max时定子电流矢量轨迹时定子电流矢量轨迹 77综上所述, 参看图综上所述, 参看图 3-28, 在整个速度范围内对定子电流矢量, 在整个速度范围内对定子
46、电流矢量可可做如下控制。做如下控制。 区间区间 I(r1r ):定子电流:定子电流可可按式按式(3-104)(3-106)控制控制,定子电流矢量将,定子电流矢量将沿着最大转矩沿着最大转矩/电流比轨迹变化电流比轨迹变化。 区间区间 II(r2rr1):若电动机已运行于若电动机已运行于 A1点点,且转速达到了转折速度,且转速达到了转折速度(r1r ),可控制定子电流矢量由,可控制定子电流矢量由 A1点点沿着圆周向下移动,这实则就是弱磁沿着圆周向下移动,这实则就是弱磁控制,随着速度的增大,定子电流矢量控制,随着速度的增大,定子电流矢量由由 A1点移动到点移动到 A2点。点。 区间区间 III(r2r
47、 ):di和和qi可可按式按式(3-109)和式和式(3-110)进行控制,进行控制,定子定子电流电流矢量沿着最大功率输出轨迹由矢量沿着最大功率输出轨迹由 A2点向点向 A4点点移动移动。当然,若当然,若max sd0ixe,这种,这种控制就不存在了。在这种情况下,可将区间控制就不存在了。在这种情况下,可将区间 II 的控制由的控制由 A2点延伸到点延伸到 A3点,如点,如图图 3-30 所示;与所示;与 A3点对应的转速为点对应的转速为r3,这是弱磁控制在理论上可达到的最高,这是弱磁控制在理论上可达到的最高转速。转速。 78图图 3-31 给出了面装式给出了面装式PMSM 的功率输出特性,
48、图的功率输出特性, 图中的参数与图中的参数与图 3-28a 中的相中的相同。同。 在在区间区间 I,电动机恒转,电动机恒转矩矩输出输出,且输出最大转矩,且输出最大转矩,输出功率与转速成正比输出功率与转速成正比。 在在区间区间 II,若不进行弱若不进行弱磁控制,输出功率将急剧减磁控制,输出功率将急剧减少,如图中虚线所示少,如图中虚线所示;若进若进行弱磁控制,功率输出将继行弱磁控制,功率输出将继续增加。续增加。 在在区间区间 III, 通过, 通过控制控制di和和qi可输出最大功率,并几可输出最大功率,并几乎保持不变。乎保持不变。 r(标么值)01.02.03.04.00.20.40.60.81.0r1r2-0.5-1.000.51.0dq,ii区间I区间II区间III(标幺值)0.750.61d0 xe(标幺值)ePqidi 图图 3-31 面装式面装式 PMSM 的功率输出特性的功率输出特性 有弱磁有弱磁 -没弱磁没弱磁 79